码迷,mamicode.com
首页 > 其他好文 > 详细

ThreadLocal学习

时间:2015-04-24 16:57:16      阅读:153      评论:0      收藏:0      [点我收藏+]

标签:threadlocal

1.ThreadLocal的历史:
在jdk1.2推出时开始支持java.lang.ThreadLocal。在J2SE5.0中的声明为:public class ThreadLocal<T> extends ObjectThreadLocal是什么呢?其实ThreadLocal并非是一个线程的本地实现版本,它并不是一个Thread,而是thread local variable(线程局部变量)。也许把它命名为ThreadLocalVar更加合适。
2.ThreadLocal作用:
线程局部变量(ThreadLocal)其实的功用非常简单,就是为每一个使用该变量的线程都提供一个变量值的副本,是每一个线程都可以独立地改变自己的副本,而不会和其它线程的副本冲突。从线程的角度看,就好像每一个线程都完全拥有该变量。
3.ThreadLocal类的接口和设计思路
在J2SE5.0中,该类有1个默认构造函数,4个普通函数:
public T get() 返回此线程局部变量的当前线程副本中的值。
protected    T initialValue()  返回此线程局部变量的当前线程的“初始值”。
public void remove()     移除此线程局部变量当前线程的值。
public void set(T value)     将此线程局部变量的当前线程副本中的值设置为指定值。
4.ThreadLocalMap
从j2sdk5.0的src来看,并非在ThreadLocal中有一个Map,而是在每个Thread中存在这样一个Map,具体是ThreadLocal.ThreadLocalMap。当用set时候,往当前线程里面的Map里 put 的key是当前的ThreadLocal对象。而不是把当前Thread作为Key值put到ThreadLocal中的Map里。
5.ThreadLocal和其它同步机制相比有什么优势呢?
ThreadLocal和其它所有的同步机制都是为了解决多线程中的对同一变量的访问冲突,在普通的同步机制中,是通过对象加锁来实现多个线 程对同一变量的安全访问的。这时该变量是多个线程共享的,使用这种同步机制需要很细致地分析在什么时候对变量进行读写,什么时候需要锁定某个对象,什么时候释放该对象的锁等等很多。所有这些都是因为多个线程共享了资源造成的。ThreadLocal就从另一个角度来解决多线程的并发访问,ThreadLocal会为每一个线程维护一个和该线程绑定的变量的副本,从而隔离了多个线程的数据,每一个线程都拥有自己的变量副本,从而也就没有必要对该变量进行同步了。ThreadLocal提供了线程安全的共享对象,在编写多线程代码时,可以把不安全的整个变量封装进ThreadLocal,或者把该对象的特定于线程的状态封装进ThreadLocal
6.hibernate中典型的ThreadLocal的应用:

private static final ThreadLocal threadSession = new ThreadLocal();  
      
    public static Session getSession() throws InfrastructureException {  
        Session s = (Session) threadSession.get();  
        try {  
            if (s == null) {  
                s = getSessionFactory().openSession();  
                threadSession.set(s);  
            }  
        } catch (HibernateException ex) {  
            throw new InfrastructureException(ex);  
        }  
        return s;  
    }

可以看到在getSession()方法中,首先判断当前线程中有没有放进去session,如果还没有,那么通过sessionFactory().openSession()来创建一个session,再将session set到线程中,实际是放到当前线程的ThreadLocalMap这个map中,这时,对于这个session的唯一引用就是当前线程中的那个ThreadLocalMap,而threadSession(ThreadLocal)作为这个值的key,要取得这个session可以通过threadSession.get()来得到,里面执行的操作实际是先取得当前线程中的ThreadLocalMap,然后将threadSession作为key将对应的值取出。这个session相当于线程的私有变量,而不是public的。 显然,其他线程中是取不到这个session的,他们也只能取到自己的ThreadLocalMap中的东西。
7.总结
ThreadLocal不是用来解决对象共享访问问题的,而主要是提供了保持对象的方法和避免参数传递的方便的对象访问方式。归纳了两点:
1、每个线程中都有一个自己的ThreadLocalMap类对象,可以将线程自己的对象保持到其中,各管各的,线程可以正确的访问到自己的对象。
2、将一个共用的ThreadLocal静态实例作为key,将不同对象的引用保存到不同线程的ThreadLocalMap中,然后在线程执行的各处通过这个静态ThreadLocal实例的get()方法取得自己线程保存的那个对象,避免了将这个对象作为参数传递的麻烦。
8.ThreadLocal的实现原理(jdk1.5源码)

public class ThreadLocal<T> {
    /**
     * ThreadLocals rely on per-thread linear-probe hash maps attached
     * to each thread (Thread.threadLocals and
     * inheritableThreadLocals).  The ThreadLocal objects act as keys,
     * searched via threadLocalHashCode.  This is a custom hash code
     * (useful only within ThreadLocalMaps) that eliminates collisions
     * in the common case where consecutively constructed ThreadLocals
     * are used by the same threads, while remaining well-behaved in
     * less common cases.
     */
    private final int threadLocalHashCode = nextHashCode();
    /**
     * The next hash code to be given out. Updated atomically. Starts at zero.
     */
    private static AtomicInteger nextHashCode = 
    new AtomicInteger();
    /**
     * The difference between successively generated hash codes - turns
     * implicit sequential thread-local IDs into near-optimally spread
     * multiplicative hash values for power-of-two-sized tables.
     */
    private static final int HASH_INCREMENT = 0x61c88647;
    /**
     * Returns the next hash code.
     */
    private static int nextHashCode() {
    return nextHashCode.getAndAdd(HASH_INCREMENT); 
    }
    /**
     * Returns the current thread‘s "initial value" for this
     * thread-local variable.  This method will be invoked the first
     * time a thread accesses the variable with the {@link #get}
     * method, unless the thread previously invoked the {@link #set}
     * method, in which case the <tt>initialValue</tt> method will not
     * be invoked for the thread.  Normally, this method is invoked at
     * most once per thread, but it may be invoked again in case of
     * subsequent invocations of {@link #remove} followed by {@link #get}.
     *
     * <p>This implementation simply returns <tt>null</tt>; if the
     * programmer desires thread-local variables to have an initial
     * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
     * subclassed, and this method overridden.  Typically, an
     * anonymous inner class will be used.
     *
     * @return the initial value for this thread-local
     */
    protected T initialValue() {
        return null;
    }
    /**
     * Creates a thread local variable.
     */
    public ThreadLocal() {
    }
    /**
     * Returns the value in the current thread‘s copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread‘s value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null)
                return (T)e.value;
        }
        return setInitialValue();
    }
    /**
     * Variant of set() to establish initialValue. Used instead
     * of set() in case user has overridden the set() method.
     *
     * @return the initial value
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }
    /**
     * Sets the current thread‘s copy of this thread-local variable
     * to the specified value.  Most subclasses will have no need to 
     * override this method, relying solely on the {@link #initialValue}
     * method to set the values of thread-locals.
     *
     * @param value the value to be stored in the current thread‘s copy of
     *        this thread-local.
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    /**
     * Removes the current thread‘s value for this thread-local
     * variable.  If this thread-local variable is subsequently
     * {@linkplain #get read} by the current thread, its value will be
     * reinitialized by invoking its {@link #initialValue} method,
     * unless its value is {@linkplain #set set} by the current thread
     * in the interim.  This may result in multiple invocations of the
     * <tt>initialValue</tt> method in the current thread.
     *
     * @since 1.5
     */
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }
    /**
     * Get the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param  t the current thread
     * @return the map
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }
    /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     * @param map the map to store.
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }
    ......
    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {
         /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal> {
            /** The value associated with this ThreadLocal. */
            Object value;
            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }
        .....
    }
}

8.1 从源码中的三个变量可以看出,threadLoaclhashCode 是真正使用的,另外两个 nextHashCode 和 HASH_INCREMENT 变量是辅助作用的,AtomicInteger使得程序可以使得其他应用以源自方式更新int的值,getAndAdd(HASH_INCREMENT) 表示每次增加常量,0x61c88647。而 threadLoaclhashCode 是在保存到ThreadLocalMap的时候,作为一个hash函数计算的时候使用的。
8.2从Entry extends WeakReference<ThreadLocal> 可以看出,ThreadLocal被作为一个弱引用,这样,一旦没有其他地方引用它,就会在GC的时候被回收。当ThreadLocal被设置为null时,ThreadLocalMap会移除key为ThreadLocal的Entry(因为Entry本身就是一个弱引用对象)。

ThreadLocal学习

标签:threadlocal

原文地址:http://zlfwmm.blog.51cto.com/5892198/1637808

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!