今天来讨论多元函数求极值问题,由于在Logistic回归用牛顿迭代法求参数提到这个,所以很有必要把它研究清楚。
回想一下,一元函数求极值问题中我们是怎样做的?比如对于凹函数,先求一阶导数,得到,由
于极值处导数一定为零,但是导数等于零的点不一定就有极值,比如。所以我们还需要进一步判断,对函数
继续求二阶导得到,现在因为在驻点处二阶导数成立,所以在处取得
极小值,二阶导数在这里的意义就是判断函数局部的凹凸性。
在多元函数中求极值的方法类似,只是在判断凹凸性这里引入了一个矩阵,叫做Hessian矩阵。
如果实值多元函数在定义域内二阶连续可导,那么我们要求它的极值,首先对所有的求偏导,即得到
个方程如下
通过这个方程可以解得驻点,这个驻点是一个长度为的一维向量。但是我们仅仅得到这个驻点,其实在这个
驻点有3种情况,分别是:局部极大值,局部极小值和非极值。
所以接下来要做的事就是判断这个驻点属于这3个中的哪一个。所以就引入了Hessian矩阵,也就是说它用来判断
在多元函数的凹凸性问题。
Hessian矩阵是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率,常用于牛顿迭代法解决优化问题。
例如对于上面的多元函数,如果它的二阶偏导数都存在,那么Hessian矩阵如下
如果函数在定义域内二阶连续可导,那么的Hessian矩阵在定义域内为对称矩阵,因为如果函数连续,
则二阶偏导数的求导顺序没有区别,即
有了Hessian矩阵,我们就可以判断上述极值的3种情况了,结论如下
(1)如果是正定矩阵,则临界点处是一个局部极小值
(2)如果是负定矩阵,则临界点处是一个局部极大值
(3)如果是不定矩阵,则临界点处不是极值
接下来继续学习如何判断一个矩阵是否是正定的,负定的,还是不定的。
一个最常用的方法就是顺序主子式。实对称矩阵为正定矩阵的充要条件是的各顺序主子式都大于零。
由于这个方法涉及到行列式的计算,比较麻烦! 对于实二次型矩阵还有一个方法,描述如下
实二次型矩阵为正定二次型的充要条件是的矩阵的特征值全大于零。为负定二次型的充要条件是
的矩阵的特征值全小于零,否则是不定的。
原文地址:http://blog.csdn.net/acdreamers/article/details/29594175