码迷,mamicode.com
首页 > 其他好文 > 详细

redis

时间:2015-04-26 13:35:17      阅读:149      评论:0      收藏:0      [点我收藏+]

标签:

如果要说内存使用效率,使用简单的key-value存储的话,Memcached的内存利用率更高,而如果Redis采用hash结构来做key-value存储,由于其组合式的压缩,其内存利用率会高于Memcached。当然,这和你的应用场景和数据特性有关

没有必要过多的关心性能,因为二者的性能都已经足够高了。由于Redis只使用单核,而Memcached可以使用多核,所以在比较上,平均每一个核上
Redis在存储小数据时比Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis最近也在存
储大数据的性能上进行优化,但是比起Memcached,还是稍有逊色。说了这么多,结论是,无论你使用哪一个,每秒处理请求的次数都不会成为瓶颈。(比
如瓶颈可能会在网卡)

如果你对数据持久化和数据同步有所要求,那么推荐你选择Redis,因为这两个特性Memcached都不具备。即使你只是希望在升级或者重启系统后缓存数据不会丢失,选择Redis也是明智的。

当然,最后还得说到你的具体应用需求。Redis相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,通常在Memcached
里,你需要将数据拿到客户端来进行类似的修改再set回去。这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的
GET/SET一样高效。所以,如果你需要缓存能够支持更复杂的结构和操作,那么Redis会是不错的选择。

1.取最新N个数据的操作

比如典型的取你网站的最新文章,通过下面方式,我们可以将最新的5000条评论的ID放在Redis的List集合中,并将超出集合部分从数据库获取

  • 使用LPUSH latest.comments<ID>命令,向list集合中插入数据
  • 插入完成后再用LTRIM latest.comments 0 5000命令使其永远只保存最近5000个ID
  • 然后我们在客户端获取某一页评论时可以用下面的逻辑(伪代码)
FUNCTION get_latest_comments(start,num_items):
    id_list = redis.lrange("latest.comments",start,start+num_items-1)
    IF id_list.length < num_items
        id_list = SQL_DB("SELECT ... ORDER BY time LIMIT ...")
    END
    RETURN id_list
END

如果你还有不同的筛选维度,比如某个分类的最新N条,那么你可以再建一个按此分类的List,只存ID的话,Redis是非常高效的。

2.排行榜应用,取TOP N操作

这个需求与上面需求的不同之处在于,前面操作以时间为权重,这个是以某个条件为权重,比如按顶的次数排序,这时候就需要我们的sorted set出马了,将你要排序的值设置成sorted set的score,将具体的数据设置成相应的value,每次只需要执行一条ZADD命令即可。

3.需要精准设定过期时间的应用

比如你可以把上面说到的sorted set的score值设置成过期时间的时间戳,那么就可以简单地通过过期时间排序,定时清除过期数据了,不仅是清除Redis中的过期数据,你完全可以把 Redis里这个过期时间当成是对数据库中数据的索引,用Redis来找出哪些数据需要过期删除,然后再精准地从数据库中删除相应的记录。

4.计数器应用

Redis的命令都是原子性的,你可以轻松地利用INCR,DECR命令来构建计数器系统。

5.Uniq操作,获取某段时间所有数据排重值

这个使用Redis的set数据结构最合适了,只需要不断地将数据往set中扔就行了,set意为集合,所以会自动排重。

6.实时系统,反垃圾系统

通过上面说到的set功能,你可以知道一个终端用户是否进行了某个操作,可以找到其操作的集合并进行分析统计对比等。没有做不到,只有想不到。

7.Pub/Sub构建实时消息系统

Redis的Pub/Sub系统可以构建实时的消息系统,比如很多用Pub/Sub构建的实时聊天系统的例子。

8.构建队列系统

使用list可以构建队列系统,使用sorted set甚至可以构建有优先级的队列系统。

9.缓存

这个不必说了,性能优于Memcached,数据结构更多样化。

应用

1.网络IO模型

Redis使用单线程的IO复用模型,自己封装了一个简单的AeEvent事件处理框架,主要实现了epoll、kqueue和select,对于单纯只
有IO操作来说,单线程可以将速度优势发挥到最大,但是Redis也提供了一些简单的计算功能,比如排序、聚合等,对于这些操作,单线程模型实际会严重影
响整体吞吐量,CPU计算过程中,整个IO调度都是被阻塞住的。

2.内存管理方面

Redis使用现场申请内存的方式来存储数据,并且很少使用free-list等方式来优化内存分配,会在一定程度上存在内存碎片,Redis跟据存储命
令参数,会把带过期时间的数据单独存放在一起,并把它们称为临时数据,非临时数据是永远不会被剔除的,即便物理内存不够,导致swap也不会剔除任何非临
时数据(但会尝试剔除部分临时数据),这点上Redis更适合作为存储而不是cache。

3.数据一致性问题

不过Redis提供了事务的功能,可以保证一串 命令的原子性,中间不会被任何操作打断。

4.存储方式及其它方面

Memcached基本只支持简单的key-value存储,不支持枚举,不支持持久化和复制等功能

   

Redis除key/value之外,还支持list,set,sorted set,hash等众多数据结构,提供了KEYS

   

进行枚举操作,但不能在线上使用,如果需要枚举线上数据,Redis提供了工具可以直接扫描其dump文件,枚举出所有数据,Redis还同时提供了持久化和复制等功能。

5.当存储的数据不能被剔除时,使用Redis更合适。

常用内存优化手段与参数

所以要关闭VM功能,请检查你的redis.conf文件中 vm-enabled 为 no。

其次最好设置下redis.conf中的maxmemory选项,该选项是告诉Redis当使用了多少物理内存后就开始拒绝后续的写入请求,该参数能很好的保护好你的Redis不会因为使用了过多的物理内存而导致swap,最终严重影响性能甚至崩溃。

另外Redis为不同数据类型分别提供了一组参数来控制内存使用,我们在前面详细分析过Redis Hash是value内部为一个HashMap,如果该Map的成员数比较少,则会采用类似一维线性的紧凑格式来存储该Map, 即省去了大量指针的内存开销,这个参数控制对应在redis.conf配置文件中下面2项:

hash-max-zipmap-entries 64 
hash-max-zipmap-value 512 
hash-max-zipmap-entries

含义是当value这个Map内部不超过多少个成员时会采用线性紧凑格式存储,默认是64,即value内部有64个以下的成员就是使用线性紧凑存储,超过该值自动转成真正的HashMap。

hash-max-zipmap-value 含义是当 value这个Map内部的每个成员值长度不超过多少字节就会采用线性紧凑存储来节省空间。

以上2个条件任意一个条件超过设置值都会转换成真正的HashMap,也就不会再节省内存了,那么这个值是不是设置的越大越好呢,答案当然是否定 的,HashMap的优势就是查找和操作的时间复杂度都是O(1)的,而放弃Hash采用一维存储则是O(n)的时间复杂度,如果

成员数量很少,则影响不大,否则会严重影响性能,所以要权衡好这个值的设置,总体上还是最根本的时间成本和空间成本上的权衡。

同样类似的参数还有:

list-max-ziplist-entries 512

说明:list数据类型多少节点以下会采用去指针的紧凑存储格式。

list-max-ziplist-value 64 

说明:list数据类型节点值大小小于多少字节会采用紧凑存储格式。

set-max-intset-entries 512 

说明:set数据类型内部数据如果全部是数值型,且包含多少节点以下会采用紧凑格式存储。

最后想说的是Redis内部实现没有对内存分配方面做过多的优化,在一定程度上会存在内存碎片,不过大多数情况下这个不会成为Redis的性能瓶 颈,不过如果在Redis内部存储的大部分数据是数值型的话,Redis内部采用了一个shared integer的方式来省去分配内存的开销,即在系统启动时先分配一个从1~n 那么多个数值对象放在一个池子中,如果存储的数据恰好是这个数值范围内的数据,则直接从池子里取出该对象,并且通过引用计数的方式来共享,这样在系统存储 了大量数值下,也能一定程度上节省内存并且提高性能,这个参数值n的设置需要修改源代码中的一行宏定义REDIS_SHARED_INTEGERS,该值 默认是10000,可以根据自己的需要进行修改,修改后重新编译就可以了。

Redis的持久化机制

Redis由于支持非常丰富的内存数据结构类型,如何把这些复杂的内存组织方式持久化到磁盘上是一个难题,所以Redis的持久化方式与传统数据库的方式有比较多的差别,Redis一共支持四种持久化方式,分别是:

       
  • 定时快照方式(snapshot)
  •    
  • 基于语句追加文件的方式(aof)
  •    
  • 虚拟内存(vm)
  •    
  • Diskstore方式

在设计思路上,前两种是基于全部数据都在内存中,即小数据量下提供磁盘落地功能,而后两种方式则是作者在尝试存储数据超过物理内存时,即大数据量的 数据存储,截止到本文,后两种持久化方式仍然是在实验阶段,并且vm方式基本已经被作者放弃,所以实际能在生产环境用的只有前两种,换句话说Redis目 前还只能作为小数据量存储(全部数据能够加载在内存中),海量数据存储方面并不是Redis所擅长的领域。下面分别介绍下这几种持久化方式:

定时快照方式(snapshot):

该持久化方式实际是在Redis内部一个定时器事件,每隔固定时间去检查当前数据发生的改变次数与时间是否满足配置的持久化触发的条件,如果满足则 通过操作系统fork调用来创建出一个子进程,这个子进程默认会与父进程共享相同的地址空间,这时就可以通过子进程来遍历整个内存来进行存储操作,而主进 程则仍然可以提供服务,当有写入时由操作系统按照内存页(page)为单位来进行copy-on-write保证父子进程之间不会互相影响。

该持久化的主要缺点是定时快照只是代表一段时间内的内存映像,所以系统重启会丢失上次快照与重启之间所有的数据。

基于语句追加方式(aof):

aof方式实际类似mysql的基于语句的binlog方式,即每条会使Redis内存数据发生改变的命令都会追加到一个log文件中,也就是说这个log文件就是Redis的持久化数据。

aof的方式的主要缺点是追加log文件可能导致体积过大,当系统重启恢复数据时如果是aof的方式则加载数据会非常慢,几十G的数据可能需要几小 时才能加载完,当然这个耗时并不是因为磁盘文件读取速度慢,而是由于读取的所有命令都要在内存中执行一遍。另外由于每条命令都要写log,所以使用aof 的方式,Redis的读写性能也会有所下降。

虚拟内存方式:

虚拟内存方式是Redis来进行用户空间的数据换入换出的一个策略,此种方式在实现的效果上比较差,主要问题是代码复杂,重启慢,复制慢等等,目前已经被作者放弃。

diskstore方式:

diskstore方式是作者放弃了虚拟内存方式后选择的一种新的实现方式,也就是传统的B-tree的方式,目前仍在实验阶段,后续是否可用我们可以拭目以待。

Redis持久化磁盘IO方式及其带来的问题

有Redis线上运维经验的人会发现Redis在物理内存使用比较多,但还没有超过实际物理内存总容量时就会发生不稳定甚至崩溃的问题,有人认为是 基于快照方式持久化的fork系统调用造成内存占用加倍而导致的,这种观点是不准确的,因为fork 调用的copy-on-write机制是基于操作系统页这个单位的,也就是只有有写入的脏页会被复制,但是一般你的系统不会在短时间内所有的页都发生了写 入而导致复制,那么是什么原因导致Redis崩溃的呢?

答案是Redis的持久化使用了Buffer IO造成的,所谓Buffer IO是指Redis对持久化文件的写入和读取操作都会使用物理内存的Page Cache,而大多数数据库系统会使用Direct IO来绕过这层Page Cache并自行维护一个数据的Cache,而当Redis的持久化文件过大(尤其是快照文件),并对其进行读写时,磁盘文件中的数据都会被加载到物理内 存中作为操作系统对该文件的一层Cache,而这层Cache的数据与Redis内存中管理的数据实际是重复存储的,虽然内核在物理内存紧张时会做 Page Cache的剔除工作,但内核很可能认为某块Page Cache更重要,而让你的进程开始Swap ,这时你的系统就会开始出现不稳定或者崩溃了。我们的经验是当你的Redis物理内存使用超过内存总容量的3/5时就会开始比较危险了。

下图是Redis在读取或者写入快照文件dump.rdb后的内存数据图:

技术分享

总结:

       
  1. 根据业务需要选择合适的数据类型,并为不同的应用场景设置相应的紧凑存储参数。
  2.    
  3. 当业务场景不需要数据持久化时,关闭所有的持久化方式可以获得最佳的性能以及最大的内存使用量。
  4.    
  5. 如果需要使用持久化,根据是否可以容忍重启丢失部分数据在快照方式与语句追加方式之间选择其一,不要使用虚拟内存以及diskstore方式。
  6.    
  7. 不要让你的Redis所在机器物理内存使用超过实际内存总量的3/5。

 

 

redis

标签:

原文地址:http://www.cnblogs.com/shareyezi/p/3507694.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!