标签:soj3312 stockholm knights 最大流 动态流 二分
Description
Time Limit: 4000 MS Memory Limit: 65536 KDescription
The city of Stockholm is a chessboard whose size is N*M. There are some Stockholm Knights in the city. Stockholm Knights are very special Knights. They only can move from a corner of a 3*4 grid to the opposite. For example, Stockholm Knights can move from (10,10) to (12,13) (12,7) (8,13) (8,7) (13,12) (7,12) (13,8) (7,8). There are some destinations in the city. And some grids of the city are destroyed which Stockholm Knights cannot step into. Every day, each knight can stay up, or choose to move to another position. Note that two knights cannot appear in the same grid on the same day. Can you tell me the minimal days needed to make all destinations be occupied by Stockholm Knights?Input
The first line of input is the number of test case. For each test case: The first line contains three integers N, M. The next N lines each contains M characters. "*" represents free grid. "#" for destroyed grid. "D" for destination. "K" for Stockholm Knight. There is a blank line before each test case. 1<= N,M <= 30Output
For each test case output the answer on a single line: If you can make all destinations be occupied by Stockholm Knights less than 30 days, output the minimal days. Otherwise, just output ">30".Sample Input
7 5 7 ######D ####### ###D### ####### K#####K 3 4 ###D #### K### 3 7 ###*### ####### K#####D 5 7 K#####D ####### ###*### ####### K#####D 3 4 **** **** ***K 3 4 **** **** ***D 10 10 #D#KKK#**K **###*KD## KK#****##K *D####K### ##D#*####* #*D##*#*K# #DKD##D### #K#K#**D## ##K###**#* #*DK###K##Sample Output
2 1 2 3 0 >30 8Source
8th SCUPC
分析:首先需要了解时间动态流模型。如果不明白请参照经典例题:
SGU438 The Glorious Karlutka River
http://blog.csdn.net/maxichu/article/details/45219567
简单说一下思路,首先求这个最小时间我采用的是二分,然后每次二分干什么的,首先超级源点要与每一个骑士的初始位置连一条边,负载为1,表示有一个骑士。然后就是时间动态流的模型,时间从0到mid。每一秒是一个网络流层。对于每一秒:遍历每个点,如果是D的点连一条边到超级汇点(稍后会提到其实不是连到超级汇点以及其原因。);然后只要不是#的点表示是可以站人的,那么它下一秒就可以转移到8个格子中(当然要是其中可以站人的)。
if (nx >= 1 && nx <= n&&ny >= 1 && ny <= m&&map[nx][ny] != ‘#‘)
addedge( t * 2000 + (i - 1) * 30 + j + 1000, (t + 1) * 2000 + (nx - 1) * 30 + ny, 1 );
然后跑一下最大流,如果结果为D的数量则可以满足,继续二分。但其实此时还有一个错误,就是刚刚提到的每一个时间层的D格子并不是直接连接到des,而需要将坐标一样的点的所有时刻先汇总到subdes[i][j],subdes[i][j]再连一条边到des。为什么呢?因为不同时间层的同一个D如果直接连到des,那么5s和10s的同一个D可能会传入两个流量,那么就错误了。因为要求某时刻某D只能有一个K。所以对于一个D,在不同的时间层里只能选择一个!
另外可以学习到的是这种时间层与网格状态结合的题,节点的编号是很复杂的,建议使用宏定义。(虽然我没用。。。)
上代码:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> using namespace std; const int MAXN = 82000; const int MAXM = 900000; const int INF = 0x3f3f3f3f; struct Edge { int from, to, cap, next; }; Edge edge[MAXM]; int head[MAXN];; int level[MAXN]; char map[50][50]; int mox[9] = { 0, 2, 2, -2, -2, 3, -3, 3, -3 }; int moy[9] = { 0, 3, -3, 3, -3, 2, 2, -2, -2 }; int src, des, cnt; void addedge( int from, int to, int cap ) { edge[cnt].from = from; edge[cnt].to = to; edge[cnt].cap = cap; edge[cnt].next = head[from]; head[from] = cnt++; swap( from, to ); edge[cnt].from = from; edge[cnt].to = to; edge[cnt].cap = 0; edge[cnt].next = head[from]; head[from] = cnt++; } int bfs( ) { memset( level, -1, sizeof level ); queue<int> q; while (!q.empty( )) q.pop( ); level[src] = 0; q.push( src ); while (!q.empty( )) { int u = q.front( ); q.pop( ); for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if (edge[i].cap > 0 && level[v] == -1) { level[v] = level[u] + 1; q.push( v ); } } } return level[des] != -1; } int dfs( int u, int f ) { if (u == des) return f; int tem; for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if (edge[i].cap > 0 && level[v] == level[u] + 1) { tem = dfs( v, min( f, edge[i].cap ) ); if (tem > 0) { edge[i].cap -= tem; edge[i ^ 1].cap += tem; return tem; } } } level[u] = -1; return 0; } int Dinic( ) { int ans = 0, tem; while (bfs( )) { while ((tem = dfs( src, INF )) > 0) { ans += tem; } } return ans; } int main() { int kase; cin >> kase; int n, m; src = 0; des = 81500; while (kase--) { int d = 0; cin >> n >> m; memset( head, -1, sizeof head ); cnt = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { cin >> map[i][j]; if (map[i][j] == 'D') d++; } } //二分答案 int low = 0, high = 31; int ans = 31; while (low <= high) { memset( head, -1, sizeof head ); cnt = 0; int mid = (low + high) / 2; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (map[i][j] == 'K') addedge( src, (i-1) * 30 + j, 1 ); } } for (int t = 0; t <= mid; t++) { for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (map[i][j] != '#') { addedge( t * 2000 + (i - 1) * 30 + j, t * 2000 + (i - 1) * 30 + j + 1000, 1 );//拆点 for (int k = 0; k <= 8; k++) { int nx = i + mox[k]; int ny = j + moy[k]; if (nx >= 1 && nx <= n&&ny >= 1 && ny <= m&&map[nx][ny] != '#') { addedge( t * 2000 + (i - 1) * 30 + j + 1000, (t + 1) * 2000 + (nx - 1) * 30 + ny, 1 ); } } } if (map[i][j] == 'D') { addedge( t * 2000 + (i - 1) * 30 + j + 1000, 31*2000+(i-1)*30+j, 1 ); } } } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if(map[i][j]=='D') addedge( 31 * 2000 + (i - 1) * 30 + j, des, 1 ); } } if (Dinic()<d) low = mid + 1; else { ans = mid; high = mid - 1; } } if (ans>30) cout << ">30" << endl; else cout << ans << endl; } return 0; }
解题报告 之 SOJ3312 Stockholm Knights
标签:soj3312 stockholm knights 最大流 动态流 二分
原文地址:http://blog.csdn.net/maxichu/article/details/45300747