Greg has a weighed directed graph, consisting of n vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game:
The game consists of n steps.
On the i-th step Greg removes vertex number xi from the graph. As Greg removes a vertex, he also removes all the edges that go in and out of this vertex.
Before executing each step, Greg wants to know the sum of lengths of the shortest paths between all pairs of the remaining vertices. The shortest path can go through any remaining vertex. In other words, if we assume that d(i,?v,?u) is the shortest path between vertices v and u in the graph that formed before deleting vertex xi, then Greg wants to know the value of the following sum: .
Help Greg, print the value of the required sum before each step.
Input
The first line contains integer n (1?≤?n?≤?500) — the number of vertices in the graph.
Next n lines contain n integers each — the graph adjacency matrix: the j-th number in the i-th line aij (1?≤?aij?≤?105,?aii?=?0) represents the weight of the edge that goes from vertex i to vertex j.
The next line contains n distinct integers: x1,?x2,?…,?xn (1?≤?xi?≤?n) — the vertices that Greg deletes.
Output
Print n integers — the i-th number equals the required sum before the i-th step.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier.
Sample test(s)
Input
1
0
1
Output
0
Input
2
0 5
4 0
1 2
Output
9 0
Input
4
0 3 1 1
6 0 400 1
2 4 0 1
1 1 1 0
4 1 2 3
Output
17 23 404 0
先离线,把操作存好,然后逆序处理,每次都用这个点去松弛一下,然后统计当前的最短路
/*************************************************************************
> File Name: CF-179-D.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年04月27日 星期一 14时01分20秒
************************************************************************/
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
static const int N = 550;
LL dp[N][N];
LL ans[N];
int ope[N];
bool use[N];
int main() {
int n;
while (~scanf("%d", &n)) {
memset(use, 0, sizeof(use));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
scanf("%I64d", &dp[i][j]);
}
}
for (int i = 1; i <= n; ++i) {
scanf("%d", &ope[i]);
}
for (int k = n; k >= 1; --k) {
int p = ope[k];
use[p] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
dp[i][j] = min(dp[i][j], dp[i][p] + dp[p][j]);
}
}
ans[k] = 0;
for (int i = 1; i <= n; ++i) {
if (use[i]) {
for (int j = 1; j <= n; ++j) {
if (use[j]) {
ans[k] += dp[i][j];
}
}
}
}
}
printf("%I64d", ans[1]);
for (int i = 2; i <= n; ++i) {
printf(" %I64d", ans[i]);
}
printf("\n");
}
return 0;
}
Codeforces Round #179 (Div. 2)---D. Greg and Graph(离线+floyd)
原文地址:http://blog.csdn.net/guard_mine/article/details/45309627