标签:
1.sensitivity,也叫recall,true positive rate,含义是预测为正向的case中对的(true positive)和所有事实为正向的case的比例。
2.specificity,也叫,true negative rate,含义是预测为负向的case中对的(true negative)和所有事实为负向的case的比例。
3.roc(receiver operating characteristic)
roc可以用来评价两个分类的分类算法。
roc曲线的纵轴是sensitivity即预测为正向的case中对的(true positive)和所有事实为正向的例子的比例,横轴是fall-out,含义是预测为正向的case中错的和所有事实为负向的比例。
一般的曲线为下图,通过调整threshold,得到不同的true positive rate和false positive rate的值。
有了roc曲线,roc曲线下方的面积可以用来衡量算法的好坏。
参考链接:
http://gim.unmc.edu/dxtests/roc3.htm
http://en.wikipedia.org/wiki/Sensitivity_and_specificity
标签:
原文地址:http://www.cnblogs.com/jfwang/p/4173306.html