标签:
问题描述:Given n pairs of parentheses, write a function to generate allcombinations of well-formed parentheses.
For example, given n = 3, a solution setis:
"((()))","(()())", "(())()", "()(())", "()()()"
问题分析:
/* 此题可以类比于跳台阶问题
* 初始状态:有(剩下)n个左括号Left,n个右括号Right
* 当左括号数left < right时,既可以添加左括号,又可以添加右括号
* left = right后,只能继续添加左括号
* 即转化成状态转移方程:O(n,m) = O(n - 1, m) + O(n , m - 1)
*/
代码:
public class Solution {
public List<String> generateParenthesis(int n) {
List<String> result = new ArrayList<>();
if(n > 0)
{
parenthesis(result, new String(), n , n);
}
return result;
}
//递归函数
private void parenthesis(List<String> list, String str, int m, int n)
{
if(m == 0 && n == 0)
{
list.add(str.toString());
return;
}
if(m != 0)
{
parenthesis(list, str + "(", m - 1, n);
}
//只有此一种情况可以添加右括号
if(m < n && n != 0)
{
parenthesis(list, str + ")", m , n - 1);
}
}
}
/*上述递归算法的变种*/
public class Solution {
public ArrayList<String> generateParenthesis(int n) {
ArrayList<String> res = new ArrayList<String>();
generate(res, "", 0, 0, n);
return res;
}
public void generate(ArrayList<String> res, String tmp, int lhs, int rhs, int n)
{
//当已经有n个左括号时,这时就只有一种情况,剩下的全为右括号
if(lhs == n)
{
for(int i = 0; i < n - rhs; i++)
{
tmp += ")";
}
res.add(tmp);
return ;
}
generate(res, tmp + "(", lhs + 1, rhs, n);
if(lhs > rhs)
generate(res, tmp + ")", lhs, rhs + 1, n);
}
}
leetcode-22 Generate Parentheses
标签:
原文地址:http://blog.csdn.net/woliuyunyicai/article/details/45337801