标签:概率dp
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls thisD.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case begins with an integer N (1 ≤ N ≤ 105).
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.
Sample Input |
Output for Sample Input |
3 1 2 50 |
Case 1: 0 Case 2: 2.00 Case 3: 3.0333333333 |
设x有n个因子,dp[x] =(dp[i]+dp[j]+....+dp[k])*(1/n)+dp[n]*1/n+1; (i,j,k表示x的因子)
换一下就可以得到dp[x]的表达式了,
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<stack> #include<vector> #include<set> #include<map> #define L(x) (x<<1) #define R(x) (x<<1|1) #define MID(x,y) ((x+y)>>1) #define eps 1e-8 //typedef __int64 ll; #define fre(i,a,b) for(i = a; i <b; i++) #define free(i,b,a) for(i = b; i >= a;i--) #define mem(t, v) memset ((t) , v, sizeof(t)) #define ssf(n) scanf("%s", n) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define bug pf("Hi\n") using namespace std; #define INF 0x3f3f3f3f #define N 100005 double dp[N]; int n; void inint() { int i,j,cnt; double temp; dp[1]=0; mem(dp,0); fre(i,2,N) { cnt=0; temp=0; for(j=1;j*j<=i;j++) if(i%j==0) { cnt++; temp+=dp[j]; if(j*j!=i) { temp+=dp[i/j]; cnt++; } } dp[i]=(temp+cnt)/(cnt-1); } } int main() { int i,j,t,ca=0; sf(t); inint(); while(t--) { sf(n); pf("Case %d: %.6lf\n",++ca,dp[n]); } return 0; }
Light oj 1038 Race to 1 Again(概率dp)
标签:概率dp
原文地址:http://blog.csdn.net/u014737310/article/details/45342465