码迷,mamicode.com
首页 > 其他好文 > 详细

UVA - 10229 - Modular Fibonacci (矩阵快速幂 + fibonacci)

时间:2015-04-30 21:57:57      阅读:175      评论:0      收藏:0      [点我收藏+]

标签:acm   uva   fibonacci   矩阵快速幂   


题目传送:UVA - 10229


思路:就是简单的矩阵快速幂求fibonacci数列,然后注意可能中间结果会爆int,因为2^19有50多万


AC代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <deque>
#include <cctype>
#define LL long long
#define INF 0x7fffffff
using namespace std;

int mp[20];

LL n, m;

void init() {
	mp[0] = 1;
	for(int i = 1; i < 20; i ++) {
		mp[i] = 2 * mp[i - 1];
	}
}

struct matrix {
	LL m[2][2];
};

matrix ans;
matrix base = {1, 1, 1, 0};


matrix multiply(matrix a, matrix b, LL MOD) {
	matrix ret;
	for(int i = 0; i < 2; i ++) {
		for(int j = 0; j < 2; j ++) {
			ret.m[i][j] = 0;
			for(int k = 0; k < 2; k ++) {
				ret.m[i][j] = (ret.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
			}
		}
	}
	return ret;
}

LL kmod(matrix a, LL n, LL MOD) {
	matrix ans = {1, 0, 0, 1};
	while(n) {
		if(n & 1) ans = multiply(ans, a, MOD);
		a = multiply(a, a, MOD);
		n >>= 1;
	}
	return ans.m[0][1];
}

int main() {
	init();
	while(cin >> n >> m) {
		cout << kmod(base, n, mp[m]) << endl;
	}
	return 0;
}














UVA - 10229 - Modular Fibonacci (矩阵快速幂 + fibonacci)

标签:acm   uva   fibonacci   矩阵快速幂   

原文地址:http://blog.csdn.net/u014355480/article/details/45398345

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!