码迷,mamicode.com
首页 > 其他好文 > 详细

zoj2432 hdoj1423 最长公共上升子序列(LCIS)

时间:2015-05-01 17:15:24      阅读:232      评论:0      收藏:0      [点我收藏+]

标签:

zoj2431  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2432

hdoj 1423 http://acm.hdu.edu.cn/showproblem.php?pid=1423

题意:

一看题目题意就很明显了, 两个数组a,b,求出两个数组公共的最长的上升子序列(可以不是连续的子序列)。

分析:

如果做过[最长公共子序列](http://blog.csdn.net/wangdan11111/article/details/41321277)应该更容易明白点。

定义状态d[i][j]表示以a数组的前i个元素,b数组的前j个元素并且以b[j]为结尾的LCIS的长度。

首先:a[i] != b[j]时, d[i][j] = d[i-1][j];   因为 d[i][j] 是以 b[j] 为结尾的LCIS,如果 d[i][j] > 0 那么就说明 a[1] .... a[i] 中必然有一个元素 a[k] 等于 b[j]。因为 a[k] != a[i],那么 a[i] 对 d[i][j] 没有贡献,于是我们不考虑它照样能得出 d[i][j] 的最优值。所以在 a[i] != b[j] 的情况下必然有 d[i][j] = d[i-1][j]。这一点参考LCS的处理方法。

当a[i]==b[j]时, 首先,这个等于起码保证了长度为1的LCIS。然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的d数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。第二维需要枚举 b[1] ... b[j-1]了,因为你不知道这里面哪个最长且哪个小于 b[j]。

状态转移方程:

a[i] != b[j]: d[i][j]=d[i-1][j] ;

a[i] == b[j]: d[i][j]=max(d[i-1][k]) + 1 ; (1<= k <= j-1)

不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。

但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(d[i-1][k])的值我们可以在之前访问 d[i][k] 的时候通过维护更新一个max变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了 d[1][n2] 再去算 d[2][1]。 如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个max变量为0,然后开始内层循环。当a[i]>b[j]的时候令max = d[i-1][j]。如果循环到了a[i] == b[j]的时候,则令 d[i][j] = max+1。 最后答案是 d[n1][1] ... d[n1][n2]的最大值。

举个例子

a={1, 4, 2, 5, -12}   b ={5, -12, 1, 2, 4, 5}

 

        5      -12     1     2     4     5  
  1     0    0   1   0   0   0
  4      0    0   1   0   2   0
  2   0    0   1   2   2   0
  5   1    0   1   2   2   3
  -12   1    1   1   2   2   3

              if(a[i] == b[j])

                  d[i][j] = mx + 1;

              else  if(a[i] > b[j] && mx < d[i-1][j]) 

                  mx = d[i-1][j];

       //只有当a[i] > b[j]时,才更新mx, 保证了所求序列是上升的。

 

仔细看表格会发现: 若d[i][j] > 0 的话,那么在数组a前i个元素中一定存在a[k]( 1 <= k <= i)等于b[j]. 否则说明前i个a元素中没有与b[j]相同的元素。

zoj2432

技术分享
#include<iostream>
#include<cstdio>
#include<string.h>
#include<cstring>
#include<math.h>
using namespace std;

const int N = 505;
int n1, n2, t, mx, sum;
int a[N], b[N], d[N][N], pi[N][N], pj[N][N];
void  dp()
{
    for(int i = 1; i <= n1; i++)
    {
        int mx = 0, x = 0, y = 0;
        for(int j = 1; j <= n2; j++)
        {
            d[i][j] = d[i-1][j];
            pi[i][j] = i-1;
            pj[i][j] = j;
            if(a[i] > b[j] && mx < d[i-1][j])
            {
                mx = d[i-1][j];
                x = i-1; y = j;
            }
            else if(a[i] == b[j])
            {
                d[i][j] = mx + 1;
                pi[i][j] = x;
                pj[i][j] = y;
            }
        }
    }
}
void ac(int x, int y)
{
    if(d[x][y] == 0)
        return;
    int fx = pi[x][y];
    int fy = pj[x][y];
    ac(fx, fy);
    if(d[x][y] != d[fx][fy] && y != 0)
    {
        printf("%d", b[y]);
        sum++;
        if(sum < mx) printf(" ");
        else
            printf("\n");
    }
}
int main()
{
    cin >> t;
    while(t--)
    {
        scanf("%d", &n1);
        for(int i = 1; i <= n1; i++) scanf("%d", &a[i]);
        scanf("%d", &n2);
        for(int i = 1; i <= n2; i++) scanf("%d", &b[i]);
        memset(d, 0, sizeof(d));
        memset(pi, -1, sizeof(pi));
        memset(pj, -1, sizeof(pj));
        dp();
        mx = 0;
        int flag = 0;
        for(int i = 1; i <= n2; i++)
        {
            if(d[n1][i] > mx)
            {
                mx = d[n1][i];
                flag = i;
            }
        }
        printf("%d\n", mx);
        for(int i = 1; i <= n1; i++)
        {
            for(int j = 1; j  <= n2; j++)
                printf("%d ", d[i][j]);
            printf("\n");
        }
        sum = 0;
        if(mx > 0)
            ac(n1, flag);
        if(t)
            printf("\n");
    }
    return 0;
}
View Code

 

hdoj1423

技术分享
#include<iostream>
#include<cstdio>
#include<string.h>
#include<cstring>
#include<math.h>
using namespace std;

int n1, n2, t, k;
int a[505], b[505], d[505][505];
int dp()
{
    int mx;
    for(int i = 1; i <= n1; i++)
    {
        mx = 0;
        for(int j = 1; j <= n2; j++)
        {
            d[i][j] = d[i-1][j];
            if(a[i] > b[j] && mx < d[i-1][j]) mx = d[i-1][j];
            else if(a[i] == b[j])
                d[i][j] = mx + 1;
        }
    }
    mx = 0;
    for(int i = 1; i <= n2; i++)
    {
        if(d[n1][i] > mx)
             mx = d[n1][i];
    }
    return mx;
}
int main()
{
    cin >> t;
    while(t--)
    {
        scanf("%d", &n1);
        for(int i = 1; i <= n1; i++) scanf("%d", &a[i]);
        scanf("%d", &n2);
        for(int i = 1; i <= n2; i++) scanf("%d", &b[i]);
        memset(d, 0, sizeof(d));
        int ans = dp();
        printf("%d\n", ans);
        if(t) printf("\n");
    }
    return 0;
}
View Code

 

 

 

zoj2432 hdoj1423 最长公共上升子序列(LCIS)

标签:

原文地址:http://www.cnblogs.com/wd-one/p/4470844.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!