码迷,mamicode.com
首页 > 其他好文 > 详细

[BC冠军赛(online)]小结

时间:2015-05-02 20:36:42      阅读:109      评论:0      收藏:0      [点我收藏+]

标签:

Movie

题意:给你n个区间,判断能否选出3个不相交的区间。

思路:令f(i)表示能否选出两个不相交区间并且以区间i为右区间的值,g(i)表示能否选出两个不相交区间并且以区间i为左区间的值,如果存在i,f(i) && g(i)== true,则存在这样的3个不相交区间。计算f数组的时候,只要从前往后和从后往前各扫一遍,表示对于i而言,另一个区间来自于它的前面(后面),同时维护右边界的最小值(因为只需关心前面(后面)的所有区间的右边界的最小值)。对于g数组类似处理。

技术分享
  1 #pragma comment(linker, "/STACK:10240000,10240000")
  2 
  3 #include <iostream>
  4 #include <cstdio>
  5 #include <algorithm>
  6 #include <cstdlib>
  7 #include <cstring>
  8 #include <map>
  9 #include <queue>
 10 #include <deque>
 11 #include <cmath>
 12 #include <vector>
 13 #include <ctime>
 14 #include <cctype>
 15 #include <set>
 16 #include <bitset>
 17 #include <functional>
 18 #include <numeric>
 19 #include <stdexcept>
 20 #include <utility>
 21 
 22 using namespace std;
 23 
 24 #define mem0(a) memset(a, 0, sizeof(a))
 25 #define mem_1(a) memset(a, -1, sizeof(a))
 26 #define lson l, m, rt << 1
 27 #define rson m + 1, r, rt << 1 | 1
 28 #define define_m int m = (l + r) >> 1
 29 #define rep_up0(a, b) for (int a = 0; a < (b); a++)
 30 #define rep_up1(a, b) for (int a = 1; a <= (b); a++)
 31 #define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
 32 #define rep_down1(a, b) for (int a = b; a > 0; a--)
 33 #define all(a) (a).begin(), (a).end()
 34 #define lowbit(x) ((x) & (-(x)))
 35 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
 36 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
 37 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
 38 #define pchr(a) putchar(a)
 39 #define pstr(a) printf("%s", a)
 40 #define sstr(a) scanf("%s", a)
 41 #define sint(a) scanf("%d", &a)
 42 #define sint2(a, b) scanf("%d%d", &a, &b)
 43 #define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
 44 #define pint(a) printf("%d\n", a)
 45 #define test_print1(a) cout << "var1 = " << a << endl
 46 #define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
 47 #define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
 48 
 49 typedef long long LL;
 50 typedef pair<int, int> pii;
 51 typedef vector<int> vi;
 52 
 53 const int dx[8] = {0, 0, -1, 1, 1, 1, -1, -1};
 54 const int dy[8] = {-1, 1, 0, 0, 1, -1, 1, -1 };
 55 const int maxn = 1e7 + 7;
 56 const int md = 10007;
 57 const int inf = 1e9 + 7;
 58 const LL inf_L = 1e18 + 7;
 59 const double pi = acos(-1.0);
 60 const double eps = 1e-6;
 61 
 62 template<class T>T gcd(T a, T b){return b==0?a:gcd(b,a%b);}
 63 template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
 64 template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
 65 template<class T>T condition(bool f, T a, T b){return f?a:b;}
 66 template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
 67 int make_id(int x, int y, int n) { return x * n + y; }
 68 
 69 struct Node {
 70     unsigned int l, r;
 71     bool operator < (const Node &that) const {
 72         return l < that.l || l == that.l && r < that.r;
 73     }
 74 };
 75 Node node[maxn];
 76 unsigned int n, l, r, a, b, c, d;
 77 bool f1[maxn], f2[maxn], g1[maxn], g2[maxn];
 78 int main() {
 79     //freopen("in.txt", "r", stdin);
 80     int T;
 81     cin >> T;
 82     while (T--) {
 83         cin >> n >> l >> r >> a >> b >> c >> d;
 84         node[1].l = l;
 85         node[1].r = r;
 86         for (int i = 2; i <= n; i++) {
 87             node[i].l = node[i - 1].l * a + b;
 88             node[i].r = node[i - 1].r * c + d;
 89         }
 90         rep_up1(i, n) {
 91             if (node[i].l > node[i].r) swap(node[i].l, node[i].r);
 92         }
 93         mem0(f1);
 94         mem0(f2);
 95         mem0(g1);
 96         mem0(g2);
 97         unsigned int min_r = 0xffffffff;
 98         rep_up1(i, n) {
 99             f1[i] = node[i].l > min_r;
100             min_update(min_r, node[i].r);
101         }
102         min_r = 0xffffffff;
103         rep_down1(i, n) {
104             f2[i] = node[i].l > min_r;
105             min_update(min_r, node[i].r);
106         }
107         unsigned int max_l = 0;
108         rep_up1(i, n) {
109             g1[i] = node[i].r < max_l;
110             max_update(max_l, node[i].l);
111         }
112         max_l = 0;
113         rep_down1(i, n) {
114             g2[i] = node[i].r < max_l;
115             max_update(max_l, node[i].l);
116         }
117         bool ok = false;
118         rep_up1(i, n) {
119             ok = ok || (f1[i] || f2[i]) && (g1[i] || g2[i]);
120             if (ok) break;
121         }
122         puts(ok? "YES" : "NO");
123     }
124     return 0;
125 }
View Code

Exploration

题意:判断一个有有向边和无向边的图是否存在环。每条边只能走一次,可能有重边,但没有自环。

思路:对于无向边连接的点可以缩为一个点,原来的点上的有向边连到缩成的点上。实际上就是判断用缩成的点建成的有向图是否存在环。并查集+dfs即可。

GCD

题意:给m个询问Li, Ri, Pi,表示[Li, Ri]的所有数的gcd等于Pi,求原来的数组(所有数的和小的优先)。

思路:对于数组中某个位置上的数a[x],考虑所有覆盖位置x的区间,那么a[x]是所有这些区间的Pi的最小公倍数的倍数,这是显然的,因为a[x]必须是每个Pi的倍数,不妨先把a数组取个最小值,令a[x] = lcm(Pi)(Li<=x<=Ri)。另一方面,对于某一个区间[Li, Ri]而言,因为这里的a[Li]~a[Ri]都是Pi的倍数了,所以gcd(a[Li], a[Li + 1] ,..., a[Ri])>=Pi,而如果gcd(a[Li]~a[ri])>Pi,则无论怎样调整a数组的值(注意:调整只能整倍的放大),gcd(a[Li]~R[i])始终大于Pi,故无解。如果gcd(a[Li]~a[Ri])=Pi了,a数组里的值就是答案,因为不能再小了。

技术分享
  1 #pragma comment(linker, "/STACK:10240000,10240000")
  2 
  3 #include <iostream>
  4 #include <cstdio>
  5 #include <algorithm>
  6 #include <cstdlib>
  7 #include <cstring>
  8 #include <map>
  9 #include <queue>
 10 #include <deque>
 11 #include <cmath>
 12 #include <vector>
 13 #include <ctime>
 14 #include <cctype>
 15 #include <set>
 16 #include <bitset>
 17 #include <functional>
 18 #include <numeric>
 19 #include <stdexcept>
 20 #include <utility>
 21 
 22 using namespace std;
 23 
 24 #define mem0(a) memset(a, 0, sizeof(a))
 25 #define mem_1(a) memset(a, -1, sizeof(a))
 26 #define lson l, m, rt << 1
 27 #define rson m + 1, r, rt << 1 | 1
 28 #define define_m int m = (l + r) >> 1
 29 #define rep_up0(a, b) for (int a = 0; a < (b); a++)
 30 #define rep_up1(a, b) for (int a = 1; a <= (b); a++)
 31 #define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
 32 #define rep_down1(a, b) for (int a = b; a > 0; a--)
 33 #define all(a) (a).begin(), (a).end()
 34 #define lowbit(x) ((x) & (-(x)))
 35 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
 36 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
 37 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
 38 #define pchr(a) putchar(a)
 39 #define pstr(a) printf("%s", a)
 40 #define sstr(a) scanf("%s", a)
 41 #define sint(a) scanf("%d", &a)
 42 #define sint2(a, b) scanf("%d%d", &a, &b)
 43 #define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
 44 #define pint(a) printf("%d\n", a)
 45 #define test_print1(a) cout << "var1 = " << a << endl
 46 #define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
 47 #define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
 48 
 49 typedef long long LL;
 50 typedef pair<int, int> pii;
 51 typedef vector<int> vi;
 52 
 53 const int dx[8] = {0, 0, -1, 1, 1, 1, -1, -1};
 54 const int dy[8] = {-1, 1, 0, 0, 1, -1, 1, -1 };
 55 const int maxn = 3e4 + 7;
 56 const int md = 10007;
 57 const int inf = 1e9 + 7;
 58 const LL inf_L = 1e18 + 7;
 59 const double pi = acos(-1.0);
 60 const double eps = 1e-6;
 61 
 62 template<class T>T gcd(T a, T b){return b==0?a:gcd(b,a%b);}
 63 template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
 64 template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
 65 template<class T>T condition(bool f, T a, T b){return f?a:b;}
 66 template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
 67 int make_id(int x, int y, int n) { return x * n + y; }
 68 
 69 LL lcm(LL a, LL b) {
 70     return a / gcd(a, b) * b;
 71 }
 72 int L[1007], R[1007], P[1007], a[1007];
 73 
 74 int main() {
 75     //freopen("in.txt", "r", stdin);
 76     int T, n, q;
 77     cin >> T;
 78     while (T--) {
 79         cin >> n >> q;
 80         rep_up0(i, q) {
 81             sint3(L[i], R[i], P[i]);
 82         }
 83         bool ok = true;
 84         rep_up1(i, n) {
 85             LL x = 1;
 86             rep_up0(j, q) {
 87                 if (L[j] <= i && R[j] >= i) {
 88                     x = lcm(x, P[j]);
 89                     if (x > 1e9) {
 90                         ok = false;
 91                         break;
 92                     }
 93                 }
 94             }
 95             a[i] = x;
 96             if (!ok) break;
 97         }
 98         if (!ok) {
 99             puts("Stupid BrotherK!");
100             continue;
101         }
102         rep_up0(i, q) {
103             int x = a[L[i]];
104             for (int j = L[i] + 1; j <= R[i]; j ++) {
105                 x = gcd(x, a[j]);
106             }
107             if (x != P[i]) {
108                 ok = false;
109                 break;
110             }
111         }
112         if (!ok) {
113             puts("Stupid BrotherK!");
114             continue;
115         }
116         rep_up1(i, n) {
117             printf("%d%c", a[i], i == n? \n :  );
118         }
119     }
120     return 0;
121 }
View Code

 

PS:

因为太弱,只看了这三题,其它题等题目挂出来尽量补上。

后来发现别人A题是暴力水过的,由于区间是随机的,所以当n很大的时候,基本可以断定答案为yes了。

[BC冠军赛(online)]小结

标签:

原文地址:http://www.cnblogs.com/jklongint/p/4472378.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!