码迷,mamicode.com
首页 > 其他好文 > 详细

PRML 1: Gaussian Distribution

时间:2015-05-02 23:16:04      阅读:228      评论:0      收藏:0      [点我收藏+]

标签:

 

1. Overview of Machine Learning

 

技术分享

 

  The information of a random variable in terms of its distribution can be measured as entropy.

  The maximum entropy configuration for a discrete variable is the uniform distribution, and for a continuous variable is the Gaussian distribution.

  The additional amount of information required as we approximate a random variable with another distribution is called relative entropy (KL-divergence).

  The KL-divergence between the joint distribution and the product of two marginals is called mutual information.

 

2. The Gaussian Distribution

    技术分享

  Partitioned Gaussians: Suppose x = [x1x2] obeys the Gaussian distribution with the mean vector mu = [mu1mu2]

             and the covariance matrix SIG = [SIG11,SIG12; SIG21,SIG22], as well as the precision matrix

             LAMB = [LAMB11,LAMB12; LAMB21, LAMB22] = inv(SIG), then we have:

       (1) Marginal Distribution: p(x1) = Gauss(mu1,SIG11), p(x2) = Gauss(mu2,SIG22) ;

       (2) Conditional Distribution: p(x1|x2) = Gauss(x1-inv(LAMB11)*LAMB12*(x2-mu2), inv(LAMB11)).

  Linear Gaussian Model: Given p(x) = Gauss(mu,inv(LAMB)) and p(y|x) = Gauss(A*x+b,inv(L)), then we have:

       (1)  p(y) = Gauss(A*mu+b,inv(L)+A*inv(LAMB)*A‘)

       (2)  p(x|y) = Gauss(SIG*{A‘*L*(y-b)+LAMB*mu},SIG), where SIG = inv(LAMB+A‘*L*A).

  Maximum Likelihood Estimate: The mean vector can be estimated sequentially by mumu + (xcnt mu) / cnt, whereas

             the covariance matrix can only be obtained by SIG = sumi((xi-mu)*(xi-mu)‘) / cnt.

  The distribution of parameters can be obtained by Bayeisan Inference so long as we have maintained the sufficient statics.

 

References:

  1. Bishop, Christopher M. Pattern Recognition and Machine Learning [M]. Singapore: Springer, 2006

PRML 1: Gaussian Distribution

标签:

原文地址:http://www.cnblogs.com/DevinZ/p/4419433.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!