码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 4565 So Easy! (共轭构造+矩阵快速幂)

时间:2015-05-03 13:16:21      阅读:118      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:

  http://acm.hdu.edu.cn/showproblem.php?pid=4565

题目大意:

  给出a,b,n,m,求出技术分享的值,

解题思路:

  因为题目中出现了开根号,和向上取整后求余,所以用矩阵快速幂加速求解过程的时候,会产生误差,就很自然地想到了凑数,因为(a-1)^2<b<a^2,得出0<a-sqrt(b)<1,则无论n取多大,(a-sqrt(b))^n都是小于1的,(a-sqrt(b))^n 与 (a+sqrt(b))^n共轭,两者展开后会相互抵销,所以((a-sqrt(b))^n + (a+sqrt(b))^n)为整数,假设((a-sqrt(b))^n + (a+sqrt(b))^n)用sn表示,则sn*(a+sqrt(b))+(a-sqrt(b)) = Sn+1 - (a^2-b)*Sn-1,进一步得出 Sn+1 = 2*a*Sn - (a*a - b) * Sn-1

代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <algorithm>
 5 #include <iostream>
 6 #include <cmath>
 7 #include <queue>
 8 using namespace std;
 9 #define LL __int64
10 LL a, b, n, m;
11 struct mat
12 {
13     LL p[2][2];
14 };
15 
16 mat mul (mat x, mat y);
17 mat pow (mat x, mat y, LL z);
18 
19 int main ()
20 {
21     mat x, y;
22     while (scanf ("%I64d %I64d %I64d %I64d", &a, &b, &n, &m) != EOF)
23     {
24         memset (x.p, 0, sizeof(x.p));
25         memset (y.p, 0, sizeof(y.p));
26         x.p[0][0] = (2*(a*a+b)%m+m)%m;//要用long long,int相乘的时候会溢出
27         x.p[0][1] = (2*a) % m;
28         y.p[0][0] = (2*a) % m;
29         y.p[0][1] = 1;
30         y.p[1][0] = ((b-a*a)%m+m)%m;
31         //y.p[1][0] = ((b-a*a)+m)%m;//这样取余是错误的,因为还有可能是负数,害wa了好几次
32         x = pow (x, y, n-1);
33         printf ("%I64d\n", x.p[0][1]);
34     }
35     return 0;
36 }
37 
38 mat mul (mat x, mat y)
39 {
40     int i, j, k;
41     mat z;
42     memset (z.p, 0, sizeof(z.p));
43     for (i=0; i<2; i++)
44         for (j=0; j<2; j++)
45         {
46             for (k=0; k<2; k++)
47                  z.p[i][j] += x.p[i][k] * y.p[k][j];
48             z.p[i][j] = (z.p[i][j] + m )% m;
49         }
50     return z;
51 }
52 mat pow (mat x, mat y, LL z)
53 {
54     while (z)
55     {
56         if (z % 2)
57             x = mul(x,y);
58         y = mul (y, y);
59         z /= 2;
60     }
61     return x;
62 }

 

hdu 4565 So Easy! (共轭构造+矩阵快速幂)

标签:

原文地址:http://www.cnblogs.com/alihenaixiao/p/4473491.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!