码迷,mamicode.com
首页 > 其他好文 > 详细

POJ - 1061

时间:2015-05-03 22:05:05      阅读:107      评论:0      收藏:0      [点我收藏+]

标签:

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 94857   Accepted: 17597

Description

两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它 们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去, 总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙 是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的 数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。 现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

Source

/**
          题意:两只青蛙 A的初始位置是x,每次跳n;B的初始位置是y,每次跳m,总长度为l;
          做法:设两只青蛙跳了t后相遇,A的为位置为 x + t * n ;B 的位置是 y + t*m
          并且 x + t * n - y + t*m = k * l;  可得(n - m) * t + k * l = y - x
          可以得到    扩展欧几里得 a * x + b* y = GCD(a,b); 求出x0,y0;
          其中a = n-m;b = l , x = x0 * (y-x ) / GCD(a,b) ,y = y0 * ( y - x)/GCD(a,b) 
          在扩展欧几里的中a/gcd(a,b) 为整数,b/gcd(a,b) 也是整数,所以在判断如果(y-x) % gcd(a,b) 
          不是整数,则无解;
          
**/
#include <iostream>
#include <cmath>
#include <string.h>
#include <stdio.h>
using namespace std;
void swap(long long &x, long long &y)
{
    long long  t;
    t = x;
    x = y;
    y = t;
}
int gcd(long long a,long long b)
{
    if(b == 0) return a;
    return gcd(b,a%b);
}

void  extend_gcd(long long a,long long b,long long d,long long &x,long long &y)
{
    if(a == 0 && b == 0) return;
    if(b == 0)
    {
        d = a;
        x = 1;
        y = 0;
        return;
    }
    extend_gcd(b,a%b,d,y,x);
    y -= a/b *x;
}
long long solve(long long a,long long b,long long n)
{
    long long tmp,tt,x1,y1;
    tmp = gcd(a,b);
    if(n%tmp) return -1;
    extend_gcd(a,b,tmp,x1,y1);
    tt = (n*x1 /tmp) %(b/tmp);
    if(tt <0) tt += (b/tmp);
    return tt;
}
int main()
{
    long long x,y,n,m,l;
    while(~scanf("%lld %lld %lld %lld %lld",&x,&y,&n,&m,&l))
    {
        long long a,b,c;
        if(n < m)
        {
            swap(n,m);
            swap(x,y);
        }
        a = n-m;
        c = y - x;
        if(c < l) c += l;
        long long ans = solve(a,l,c);
        if(ans == -1)  printf("Impossible\n");
        else
            printf("%lld\n", ans);
    }
}

 

 

POJ - 1061

标签:

原文地址:http://www.cnblogs.com/chenyang920/p/4474713.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!