标签:
题意:给出n组l[i],r[i],求出能够相互嵌套的最大个数;
思路:2073数组大小为100,纯暴力就可以了,不过注意排序时,按照r的顺序从小到大;
5214数组大小为10000000,纯暴力的话绝对超时,但是要求能找到3组的时候就输出YES即可,因此从两边贪心就好了,本来以为排序更方便一些,不过TLE了,改成找最大最小就好了;
误区:我以为的是图论,求最长路径(bellman-ford可以求最长路,只要吧权值改成相反数即可),其实适用于2073,不过大材小用了,而且判的很严格,容易MLE,TLE;
2073代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <cstdlib> 6 #define repu(i,a,b) for(int i=a;i<b;i++) 7 #define N 1100 8 #define MOD 4294967296 9 #define ll long long 10 using namespace std; 11 int vis[N]; 12 struct S 13 { 14 int l,r; 15 bool operator < (const S& p) const 16 { 17 if(r == p.r) 18 return l < p.l; 19 return r < p.r; 20 } 21 } m[N]; 22 int main() 23 { 24 int T,n,a,b,c,d; 25 while(cin>>n&&n) 26 { 27 repu(i,0,n) 28 cin>>m[i].l>>m[i].r; 29 sort(m,m+n); 30 memset(vis,0,sizeof(vis)); 31 int maxn = 0; 32 int u = m[0].r,v= m[0].l; 33 // repu(i,0,n) 34 // cout<<m[i].l<<" "<<m[i].r<<endl; 35 repu(i,0,n) 36 { 37 repu(j,i+1,n) 38 { 39 if(u <= m[j].l && v < m[j].l) 40 { 41 u = m[j].r; 42 v = m[j].l; 43 vis[i]++; 44 } 45 } 46 vis[i]++; 47 // cout<<vis[i]<<endl; 48 maxn = max(vis[i],maxn); 49 } 50 cout<<maxn<<endl; 51 } 52 return 0; 53 }
5214代码:
1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #include<cmath> 5 #define MOD 4294967296 6 7 using namespace std; 8 typedef unsigned int LL; 9 int T; 10 int n; 11 const int N=10000005; 12 LL s1,e1; 13 LL L1,R1,L2,R2; 14 LL minL,minR,maxL,maxR; 15 LL a,b,c,d; 16 LL l[N],r[N]; 17 int main() 18 { 19 scanf("%d",&T); 20 while(T--) 21 { 22 cin>>n>>s1>>e1>>a>>b>>c>>d; 23 l[1]=s1; 24 r[1]=e1; 25 minL=maxL=l[1]; 26 minR=maxR=r[1]; 27 for(int i=2; i<=n; i++) 28 { 29 l[i]=l[i-1]*a+b; 30 r[i]=r[i-1]*c+d; 31 if(l[i]>r[i]) 32 swap(l[i],r[i]); 33 if(r[i]<minR)///找出最大最小的两组,到时候直接跟这两组比较就好了 34 { 35 minL=l[i]; 36 minR=r[i]; 37 } 38 if(l[i]>maxL) 39 { 40 maxL=l[i]; 41 maxR=r[i]; 42 } 43 } 44 bool flag=false; 45 for(int i=1; i<=n; i++) 46 { 47 if(l[i]>minR&&r[i]<maxL) 48 { 49 flag=true; 50 break; 51 } 52 } 53 printf("%s\n",flag?"YES":"NO"); 54 } 55 return 0; 56 }
标签:
原文地址:http://www.cnblogs.com/ACMERY/p/4475022.html