码迷,mamicode.com
首页 > 其他好文 > 详细

POJ - 2192 - Zipper (简单DP)

时间:2015-05-04 10:08:00      阅读:155      评论:0      收藏:0      [点我收藏+]

标签:acm   poj   dp   


题目传送:Zipper


思路:设状态dp[i][j]为字符串A前i个字符和B前j个字符能否组成C的前i+j个字符,边界为dp[0][0] = 1能则为true,否则false


AC代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <deque>
#include <cctype>
#define LL long long
#define INF 0x7fffffff
using namespace std;

char A[205];
char B[205];
char C[405];

int T;

int dp[205][205];

int main() {
	scanf("%d", &T);
	int cas = 1;
	while(T --) {
		scanf("%s %s %s", A + 1, B + 1, C + 1);
		int lena = strlen(A + 1);
		int lenb = strlen(B + 1);
		int lenc = strlen(C + 1);
		memset(dp, 0, sizeof(dp));
		dp[0][0] = 1;
		for(int i = 0; i <= lena; i ++) {
			for(int j = 0; j <= lenb; j ++) {
				if(i > 0 && A[i] == C[i+j] && dp[i-1][j] == 1) {
					dp[i][j] = 1;
				}
				if(j > 0 && B[j] == C[i+j] && dp[i][j-1] == 1) {
					dp[i][j] = 1;
				}
			}
		}
		if(dp[lena][lenb] == 1) {
			printf("Data set %d: yes\n", cas ++);
		}
		else {
			printf("Data set %d: no\n", cas ++);
		}
	}
	return 0;
}






刚开始的思路是算出A与C的LCS和B与C的LCS,如果满足A和B都是C的子序列的话且所有字母都相同数目一样则输出yes,但是有漏洞,比如ab, ab, baba,对于A是B或B是A的子串的时候就不对了


用LCS做的代码(贴一下,谨记):

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <deque>
#include <cctype>
#define LL long long
#define INF 0x7fffffff
using namespace std;

int T;
char s1[205], s2[205], s3[405];
int num1[26], num2[26];

int dp[205][405], dp2[205][405];

int main() {
	scanf("%d", &T);
	int cas = 1;
	while(T --) {
		memset(num1, 0, sizeof(num1));
		memset(num2, 0, sizeof(num2));
		
		scanf("%s %s %s", s1 + 1, s2 + 1, s3 + 1);
		int len1 = strlen(s1 + 1);
		int len2 = strlen(s2 + 1);
		int len3 = strlen(s3 + 1);
		for(int i = 1; i <= len1; i ++) {
			num1[s1[i] - 'a'] ++;
		}
		for(int i = 1; i <= len2; i ++) {
			num1[s2[i] - 'a'] ++;
		}
		for(int i = 1; i <= len3; i ++) {
			num2[s3[i] - 'a'] ++;
		}
		
		printf("Data set %d: ", cas ++);
		
		int flag = 1;
		for(int i = 0; i < 26; i ++) {
			if(num1[i] != num2[i]) {
				flag = 0;
				break;
			}
		}
		
		if(flag == 0) {
			printf("no\n");
			continue;
		}
		
		memset(dp, 0, sizeof(dp));
		memset(dp2, 0, sizeof(dp2));
		
		for(int i = 1; i <= len1; i ++) {
			for(int j = 1; j <= len3; j ++) {
				if(s1[i] == s3[j]) {
					dp[i][j] = dp[i-1][j-1] + 1;
				}
				else {
					dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
				}
			}
		}
		
		for(int i = 1; i <= len2; i ++) {
			for(int j = 1; j <= len3; j ++) {
				if(s2[i] == s3[j]) {
					dp2[i][j] = dp2[i-1][j-1] + 1;
				}
				else {
					dp2[i][j] = max(dp2[i-1][j], dp2[i][j-1]);
				}
			}
		}
		
		if(dp[len1][len3] != len1 || dp2[len2][len3] != len2) {
			flag = 0;
		}
		if(flag) {
			printf("yes\n");
		}
		else printf("no\n");
	}
 	return 0;
}







POJ - 2192 - Zipper (简单DP)

标签:acm   poj   dp   

原文地址:http://blog.csdn.net/u014355480/article/details/45464893

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!