码迷,mamicode.com
首页 > 其他好文 > 详细

求平面最近点对(分治与递归,注:最远点对用凸包求)

时间:2015-05-06 01:24:15      阅读:118      评论:0      收藏:0      [点我收藏+]

标签:

Quoit Design

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 36793    Accepted Submission(s): 9552


Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
 

 

Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
 

 

Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places. 
 

 

Sample Input
2 0 0 1 1 2 1 1 1 1 3 -1.5 0 0 0 0 1.5 0
 

 

Sample Output
0.71 0.00 0.75

 分析:分治与递归

程序:

#include<cmath>   
#include<algorithm>   
using namespace std;  
int n;  
struct node  
{  
  double x;  
  double y;  
}p[100005];  
int a[100005];  
double cmpx(node a,node b)  
{  
  return a.x<b.x;  
}  
double cmpy(int a,int b)  
{  
  return p[a].y<p[b].y;  
}  
double min(double a,double b)  
{  
  return a<b?a:b;  
}  
double dis(node a,node b)  
{  
  return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));  
}  
double find(int l,int r)  
{  
     if(r==l+1)  
      return dis(p[l],p[r]);  
     if(l+2==r)  
      return min(dis(p[l],p[r]),min(dis(p[l],p[l+1]),dis(p[l+1],p[r])));  
     int mid=(l+r)>>1;  
     double ans=min(find(l,mid),find(mid+1,r));  
     int i,j,cnt=0;  
     for(i=l;i<=r;i++)  
     {  
       if(p[i].x>=p[mid].x-ans&&p[i].x<=p[mid].x+ans)  
          a[cnt++]=i;  
     }  
     sort(a,a+cnt,cmpy);  
     for(i=0;i<cnt;i++)  
     {  
       for(j=i+1;j<cnt;j++)  
       {  
         if(p[a[j]].y-p[a[i]].y>=ans) break;  
         ans=min(ans,dis(p[a[i]],p[a[j]]));  
       }  
     }   
     return ans;  
}  
int main()  
{  
    int i;  
     
    while(scanf("%d",&n)!=EOF)  
    {  
      if(!n) break;  
      for(i=0;i<n;i++)  
       scanf("%lf %lf",&p[i].x,&p[i].y);  
      sort(p,p+n,cmpx);  
      printf("%.2lf%\n",find(0,n-1)/2);  
    }  
    return 0;  
}  

  

求平面最近点对(分治与递归,注:最远点对用凸包求)

标签:

原文地址:http://www.cnblogs.com/mypsq/p/4480703.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!