标签:
FU-A分包方式,以及从RTP包里面得到H.264数据和AAC数据的方法
RFC3984是H.264的baseline码流在RTP方式下传输的规范,这里只讨论FU-A分包方式,以及从RTP包里面得到H.264数据和AAC数据的方法。
H.264的NAL层处理
H264以NALU(NALunit)为单位来支持编码数据在基于分组交换技术网络中传输。
NALU定义了可用于基于分组和基于比特流系统的基本格式,同时给出头信息,从而提供了视频编码和外部事件的接口。
H264编码过程中的三种不同的数据形式:
SODB 数据比特串-->最原始的编码数据,即VCL数据;
RBSP 原始字节序列载荷-->在SODB的后面填加了结尾比特(RBSP trailing bits 一个bit“1”)若干比特“0”,以便字节对齐;
EBSP 扩展字节序列载荷-->在RBSP基础上填加了仿校验字节(0X03)它的原因是: 在NALU加到Annexb上时,需要添加每组NALU之前的开始码StartCodePrefix,如果该NALU对应的slice为一帧的开始则用4位字节表示,ox00000001,否则用3位字节表示ox000001(是一帧的一部分)。另外,为了使NALU主体中不包括与开始码相冲突的,在编码时,每遇到两个字节连续为0,就插入一个字节的0x03。解码时将0x03去掉。也称为脱壳操作。
编码处理过程:
1. 将VCL层输出的SODB封装成nal_unit, NALU是一个通用封装格式,可以适用于有序字节流方式和IP包交换方式。
2. 针对不同的传送网络(电路交换|包交换),将nal_unit封装成针对不同网络的封装格式(比如把nalu封装成rtp包)。
---------------------------------------------------
处理过程一,VCL数据封装成NALU
---------------------------------------------------
VCL层输出的比特流SODB(String Of Data Bits),到nal_unit之间,经过了以下三步处理:
1.SODB字节对齐处理后封装成RBSP(Raw Byte Sequence Payload)。
2.为防止RBSP的字节流与有序字节流传送方式下的SCP(start_code_prefix_one_3bytes,0x000001)出现字节竞争情形,循环检测RBSP前三个字节,在出现字节竞争时在第三字节前加入emulation_prevention_three_byte(0x03),具体方法:
nal_unit( NumBytesInNALunit ) {
forbidden_zero_bit
nal_ref_idc
nal_unit_type
NumBytesInRBSP = 0
for( i = 1; i < NumBytesInNALunit; i++ ) {
if( i + 2 < NumBytesInNALunit && next_bits( 24 ) = = 0x000003 ) {
rbsp_byte[ NumBytesInRBSP++ ]
rbsp_byte[ NumBytesInRBSP++ ]
i += 2
emulation_prevention_three_byte /* equal to 0x03 */
} else
rbsp_byte[ NumBytesInRBSP++ ]
}
}
3. 防字节竞争处理后的RBSP再加一个字节的header(forbidden_zero_bit+ nal_ref_idc+ nal_unit_type),封装成nal_unit.
------------------------------------------------
处理过程二,NALU的RTP打包
一、NALU打包成RTP的方式有三种:
1. 单一 NAL 单元模式
即一个RTP 包仅由一个完整的 NALU 组成. 这种情况下 RTP NAL 头类型字段和原始的 H.264的
NALU 头类型字段是一样的.
2. 组合封包模式
即可能是由多个NAL 单元组成一个 RTP 包. 分别有4种组合方式: STAP-A, STAP-B, MTAP16, MTAP24.
那么这里的类型值分别是 24, 25, 26 以及 27.
3. 分片封包模式
用于把一个NALU 单元封装成多个 RTP 包. 存在两种类型 FU-A 和 FU-B. 类型值分别是 28 和 29.
还记得前面nal_unit_type的定义吧,0~23是给H264用的,24~31未使用,在rtp打包时,如果一个NALU放在一个RTP包里,可以使用NALU的nal_unit_type,但是当需要把多个NALU打包成一个RTP包,或者需要把一个NALU打包成多个RTP包时,就定义新的type来标识。
Type Packet Typename
---------------------------------------------------------
0 undefined -
1-23 NAL unit Single NAL unit packet perH.264
24 STAP-A Single-timeaggregation packet
25 STAP-B Single-timeaggregation packet
26 MTAP16 Multi-time aggregationpacket
27 MTAP24 Multi-time aggregationpacket
28 FU-A Fragmentationunit
29 FU-B Fragmentationunit
30-31 undefined
二、三种打包方式的具体格式
1 .单一 NAL 单元模式
对于 NALU 的长度小于 MTU 大小的包, 一般采用单一 NAL 单元模式.
对于一个原始的 H.264 NALU 单元常由 [Start Code] [NALU Header] [NALU Payload] 三部分组成, 其中 Start Code 用于标示这是一个
NALU 单元的开始, 必须是 "00 00 00 01" 或 "00 00 01", NALU 头仅一个字节, 其后都是 NALU 单元内容.
打包时去除 "00 00 01" 或 "00 00 00 01" 的开始码, 把其他数据封包的 RTP 包即可.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|F|NRI| type | |
+-+-+-+-+-+-+-+-+ |
| |
| Bytes 2..n of a Single NALunit |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
如有一个 H.264 的 NALU 是这样的:
[00 00 00 01 67 42 A0 1E 23 56 0E 2F... ]
这是一个序列参数集 NAL 单元. [00 00 00 01] 是四个字节的开始码,67 是 NALU 头, 42 开始的数据是 NALU 内容.
封装成 RTP 包将如下:
[ RTP Header ] [ 67 42 A0 1E 23 56 0E 2F]
即只要去掉 4 个字节的开始码就可以了.
2 组合封包模式
其次, 当 NALU 的长度特别小时, 可以把几个 NALU 单元封在一个 RTP 包中.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RTP Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAP-A NAL HDR| NALU 1Size | NALU 1HDR |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NALU 1 Data |
: :
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | NALU 2Size | NALU 2 HDR |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NALU 2 Data |
: :
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3 FragmentationUnits (FUs).
而当 NALU 的长度超过 MTU 时, 就必须对 NALU 单元进行分片封包. 也称为 Fragmentation Units (FUs).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FU indicator | FUheader | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| FU payload |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14. RTPpayload format for FU-A
FU indicator有以下格式:
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|F|NRI| Type |
+---------------+
FU指示字节的类型域 Type=28表示FU-A。。NRI域的值必须根据分片NAL单元的NRI域的值设置。
FU header的格式如下:
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|S|E|R| Type |
+---------------+
S: 1 bit
当设置成1,开始位指示分片NAL单元的开始。当跟随的FU荷载不是分片NAL单元荷载的开始,开始位设为0。
E: 1 bit
当设置成1, 结束位指示分片NAL单元的结束,即, 荷载的最后字节也是分片NAL单元的最后一个字节。当跟随的FU荷载不是分片NAL单元的最后分片,结束位设置为0。
R: 1 bit
保留位必须设置为0,接收者必须忽略该位。
Type: 5 bits
1、单个NAL包单元
12字节的RTP头后面的就是音视频数据,比较简单。一个封装单个NAL单元包到RTP的NAL单元流的RTP序号必须符合NAL单元的解码顺序。
2、FU-A的分片格式
数据比较大的H264视频包,被RTP分片发送。12字节的RTP头后面跟随的就是FU-A分片:
FU indicator有以下格式:
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|F|NRI| Type |
+---------------+
FU指示字节的类型域 Type=28表示FU-A。。NRI域的值必须根据分片NAL单元的NRI域的值设置。
FU header的格式如下:
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|S|E|R| Type |
+---------------+
S: 1 bit
当设置成1,开始位指示分片NAL单元的开始。当跟随的FU荷载不是分片NAL单元荷载的开始,开始位设为0。
E: 1 bit
当设置成1, 结束位指示分片NAL单元的结束,即, 荷载的最后字节也是分片NAL单元的最后一个字节。当跟随的FU荷载不是分片NAL单元的最后分片,结束位设置为0。
R: 1 bit
保留位必须设置为0,接收者必须忽略该位。
Type: 5 bits
NAL单元荷载类型定义见下表
表1. 单元类型以及荷载结构总结
Type Packet Typename
---------------------------------------------------------
0 undefined -
1-23 NALunit Single NAL unit packet per H.264
24 STAP-A Single-time aggregation packet
25 STAP-B Single-time aggregation packet
26 MTAP16 Multi-time aggregation packet
27 MTAP24 Multi-time aggregation packet
28 FU-A Fragmentation unit
29 FU-B Fragmentationunit
30-31 undefined -
3、拆包和解包
拆包:当编码器在编码时需要将原有一个NAL按照FU-A进行分片,原有的NAL的单元头与分片后的FU-A的单元头有如下关系:
原始的NAL头的前三位为FU indicator的前三位,原始的NAL头的后五位为FU header的后五位,FUindicator与FU header的剩余位数根据实际情况决定。
解包:当接收端收到FU-A的分片数据,需要将所有的分片包组合还原成原始的NAL包时,FU-A的单元头与还原后的NAL的关系如下:
还原后的NAL头的八位是由FU indicator的前三位加FU header的后五位组成,即:
nal_unit_type = (fu_indicator & 0xe0) | (fu_header & 0x1f)
4、代码实现
从RTP包里面得到H264视频数据的方法:
// 功能:解码RTP H.264视频
// 参数:1.RTP包缓冲地址 2.RTP包数据大小 3.H264输出地址 4.输出数据大小
// 返回:true:表示一帧结束 false:FU-A分片未结束或帧未结束
#define RTP_HEADLEN 12
bool UnpackRTPH264( void * bufIn, int len, void ** pBufOut, int * pOutLen)
{
* pOutLen = 0 ;
if (len < RTP_HEADLEN)
{
return false ;
}
unsigned char * src = (unsigned char* )bufIn + RTP_HEADLEN;
unsigned char head1 = * src; // 获取第一个字节
unsigned char head2 = * (src + 1 ); // 获取第二个字节
unsigned char nal = head1 & 0x1f; // 获取FU indicator的类型域,
unsigned char flag = head2 & 0xe0 ; // 获取FU header的前三位,判断当前是分包的开始、中间或结束
unsigned char nal_fua = (head1 & 0xe0 ) | (head2 & 0x1f); // FU_A nal
bool bFinishFrame = false ;
if (nal == 0x1c ) // 判断NAL的类型为0x1c=28,说明是FU-A分片
{ // fu-a
if (flag== 0x80 ) // 开始
{
* pBufOut = src - 3 ;
* (( int * )( * pBufOut)) = 0x01000000 ; // zyf:大模式会有问题
* ((char * )( * pBufOut) + 4 ) = nal_fua;
* pOutLen = len - RTP_HEADLEN + 3 ;
}
else if (flag == 0x40 ) // 结束
{
* pBufOut = src + 2 ;
* pOutLen = len - RTP_HEADLEN - 2 ;
}
else // 中间
{
* pBufOut = src + 2 ;
* pOutLen = len - RTP_HEADLEN - 2 ;
}
}
else // 单包数据
{
* pBufOut = src - 4 ;
* (( int * )( * pBufOut)) = 0x01000000 ; // zyf:大模式会有问题
* pOutLen = len - RTP_HEADLEN + 4 ;
}
unsigned char * bufTmp = (unsigned char* )bufIn;
if (bufTmp[ 1 ] & 0x80 )
{
bFinishFrame = true ; // rtp mark
}
else
{
bFinishFrame = false ;
}
return bFinishFrame;
}
从RTP包里面得到AAC音频数据的方法:
//功能:解RTP AAC音频包,声道和采样频率必须知道。
//参数:1.RTP包缓冲地址 2.RTP包数据大小 3.H264输出地址 4.输出数据大小
//返回:true:表示一帧结束 false:帧未结束 一般AAC音频包比较小,没有分片。
bool UnpackRTPAAC(void * bufIn, int recvLen, void** pBufOut, int* pOutLen)
{
unsigned char* bufRecv = (unsigned char*)bufIn;
//char strFileName[20];
unsigned char ADTS[] = {0xFF, 0xF1, 0x00, 0x00, 0x00, 0x00, 0xFC};
int audioSamprate = 32000;//音频采样率
int audioChannel = 2;//音频声道 1或2
int audioBit = 16;//16位 固定
switch(audioSamprate)
{
case 16000:
ADTS[2] = 0x60;
break;
case 32000:
ADTS[2] = 0x54;
break;
case 44100:
ADTS[2] = 0x50;
break;
case 48000:
ADTS[2] = 0x4C;
break;
case 96000:
ADTS[2] = 0x40;
break;
default:
break;
}
ADTS[3] = (audioChannel==2)?0x80:0x40;
int len = recvLen - 16 + 7;
len <<= 5;//8bit * 2 - 11 = 5(headerSize 11bit)
len |= 0x1F;//5 bit 1
ADTS[4] = len>>8;
ADTS[5] = len & 0xFF;
*pBufOut = (char*)bufIn+16-7;
memcpy(*pBufOut, ADTS, sizeof(ADTS));
*pOutLen = recvLen - 16 + 7;
unsigned char* bufTmp = (unsigned char*)bufIn;
bool bFinishFrame = false;
if (bufTmp[1] & 0x80)
{
//DebugTrace::D("Marker");
bFinishFrame = true;
}
else
{
bFinishFrame = false;
}
return true;
}
FU-A分包方式,以及从RTP包里面得到H.264数据和AAC数据的方法
标签:
原文地址:http://www.cnblogs.com/lidabo/p/4481376.html