码迷,mamicode.com
首页 > 其他好文 > 详细

量子力学第六弹——一维定态问题

时间:2015-05-06 15:12:00      阅读:129      评论:0      收藏:0      [点我收藏+]

标签:量子力学   波函数   一维定态问题   薛定谔方程   

General Discussion of Schr?dinger Equation

single particle equation

i???t|ψ(x,t)?=H|ψ(x,t)?,H=??22m?2+V(x,t)

multi-particle

i???t|ψ(x1,?,xN,t)?=H|ψ(x1,?,xN,t)?,H=i=1N[??22m?2+V(x,t)]+V(x1,?,xN,t)

Properties

??tρ+??j=0

where

ρ=|ψ(x,t)2|=ψ(x,t)?ψ(x,t)j=?2mi[ψ?(x,t)?ψ(x,t)?ψ(x,t)?ψ?(x,t)]

proof
We assume V(x,t) to be real

i???tψ(x,t)=??22m?2ψ(x,t)+V(x,t)ψ(x,t)??i???tψ?(x,t)=??22m?2ψ?(x,t)+V(x,t)ψ?(x,t)??????????????????????????????????ψ?(x,t)i???tψ(x,t)=ψ?(x,t)(??22m?2ψ(x,t)+V(x,t)ψ(x,t))ψ(x,t)(?i???tψ?(x,t))=ψ(x,t)(??22m?2ψ?(x,t)+V(x,t)ψ?(x,t))

(1)?(2)
l.h.s=i?(ψ???tψ+ψ??tψ?)=i???t|ψ(x,t)2|r.h.s=??22m(ψ??2ψ?ψ?2ψ?)=??22m??(ψ??ψ?ψ?ψ?)?i???t|ψ(x,t)2|+?2mi??(ψ??ψ?ψ?ψ?)0

let ρ=|ψ(x,t)2|,j=?2mi[ψ??ψ?ψ?ψ?]
thus
??tρ+??j=0

Some properties of 1D stationary problem

i???t|ψ(x,t)?=H|ψ(x,t)?

Assume |ψ(x,t)?=|ψ(x)??e?iEt/?
Then
Hψ=Eψ

  1. [??22m?2+V(x)]ψ(x)=Eψ(x)
    正问题:V(x)E,ψ(x)
    逆问题:EV(x)
  2. both ψ(x),ψ?(x) are solutions.
  3. if ψ(x) is not degenerate, it can be chosen to be real.
  4. if ψ(x) is a solution and V(x)=V(?x) then ψ(?x) is another solution.
  5. if V(x)=V(?x), a complete set of solutions.

Infinite Square Potential Well Problem

Potential

V(x)={0,,0<x<aelse

Wave function

d2dx2ψ(x)+2mE?2ψ(x)=0

General Solution

ψ(x)=Asin(kx+δ),k=2mE?????

Properties

  1. Bounded
  2. Discrete(束缚态离散谱,非束缚态连续谱)
  3. Exact solution

Boundary condition

ψ(0)=0,ψ(a)=0

Solution

ψn(x)?????2a??sin(nπxa),0,0<x<aelse

En=?2π2n22ma2

Finite Square Potential Well Problem

Potential

V(x)={0,V0,|x|<a2else

Wave function

?????????d2dx2ψ(x)+2mE?2ψ(x)=0,d2dx2ψ(x)+(2mE?2?V0)ψ(x)=0|x|<a2else

General Solution

?????????ψ(x)e±βx,β=2m(V0?E)???????????ψ(x)sinkx,coskx,e±ikx,k=2mE?????|x|<a2else

Because e±ikx does not have a definite parity, it cannot be a solution.

Properties

  1. Bounded
  2. Discrete
  3. Not exact solution

Boundary condition

???????ψ(x)0,[lncoskx]x=a2=[lne?βx]x=a2,[lnsinkx]x=a2=[lne?βx]x=a2,|x|(even parity)(odd parity)

Solution

ψn(x)=?????2a??sin(nπxa),0,0<x<aelse

En=?2π2n22ma2

The minimum energy is not zero.

Reduced Equations

?????????ktan(ka2)=β?kcot(ka2)=β?{ξtanξ=η,?ξcotξ=η,even parityodd parity

where ξ=ka2,η=βa2

The above equation can only be solved numerically.

Finite Square Potential Barrier Problem

Potential

V(x)={V0,0,0<x<aelse

Wave function

?????????d2dx2ψ(x)+2m(E?V0)?2ψ(x)=0,d2dx2ψ(x)+2mE?2ψ(x)=0,0<x<aelse

General Solution

ψ(x)=???Aeκx+Be?κx,eikx+Qe?ikx,Seikx,0<x<ax<0x>a

where κ=2m(V0?E)???????????,k=2mE?????,Q is the reflection coefficient amplitude and S is the transmission coefficient amplitude.
T=|S|2,R=|Q|2=1?T

Properties

  1. Bounded
  2. Discrete(束缚态离散谱,非束缚态连续谱)
  3. Exact solution

Boundary condition

?????????????1+Q=A+Bikκ(1?Q)=A?BAeκa+Be?κa=SeikaAeκa?Be?κa=ikκSeika

Solution

???????????T=|S|2=4k2κ2(k2+κ2)2sh2κa+4k2κ2,R=|Q|2=(k2+κ2)2sh2κa(k2+κ2)2sh2κa+4k2κ2=1?T

Discussion

  • Quantum tunneling effect: even E<V0,T0, even E>V0,T1

1D Harmonic Oscillator Problem

Potential

V(x)=12mω2x2


Thanks to Prof. Guo Hong

量子力学第六弹——一维定态问题

标签:量子力学   波函数   一维定态问题   薛定谔方程   

原文地址:http://blog.csdn.net/u013795675/article/details/45534983

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!