General Discussion of Schr?dinger Equation
single particle equation
i???t|ψ(x,t)?=H|ψ(x,t)?,H=??22m?2+V(x,t)
multi-particle
i???t|ψ(x1,?,xN,t)?=H|ψ(x1,?,xN,t)?,H=∑i=1N[??22m?2+V(x,t)]+V(x1,?,xN,t)
Properties
??tρ+??j=0
where
ρ=|ψ(x,t)2|=ψ(x,t)?ψ(x,t)j=?2mi[ψ?(x,t)?ψ(x,t)?ψ(x,t)?ψ?(x,t)]
proof
We assume V(x,t) to be real
i???tψ(x,t)=??22m?2ψ(x,t)+V(x,t)ψ(x,t)??i???tψ?(x,t)=??22m?2ψ?(x,t)+V(x,t)ψ?(x,t)??????????????????????????????????ψ?(x,t)i???tψ(x,t)=ψ?(x,t)(??22m?2ψ(x,t)+V(x,t)ψ(x,t))ψ(x,t)(?i???tψ?(x,t))=ψ(x,t)(??22m?2ψ?(x,t)+V(x,t)ψ?(x,t))
(1)?(2)
l.h.s=i?(ψ???tψ+ψ??tψ?)=i???t|ψ(x,t)2|r.h.s=??22m(ψ??2ψ?ψ?2ψ?)=??22m??(ψ??ψ?ψ?ψ?)?i???t|ψ(x,t)2|+?2mi??(ψ??ψ?ψ?ψ?)≡0
let ρ=|ψ(x,t)2|,j=?2mi[ψ??ψ?ψ?ψ?]
thus
??tρ+??j=0
Some properties of 1D stationary problem
i???t|ψ(x,t)?=H|ψ(x,t)?
Assume
|ψ(x,t)?=|ψ(x)??e?iEt/?
Then
Hψ=Eψ
- [??22m?2+V(x)]ψ(x)=Eψ(x)
正问题:V(x)→E,ψ(x)
逆问题:E→V(x)
- both ψ(x),ψ?(x) are solutions.
- if ψ(x) is not degenerate, it can be chosen to be real.
- if ψ(x) is a solution and V(x)=V(?x) then ψ(?x) is another solution.
- if V(x)=V(?x), a complete set of solutions.
Infinite Square Potential Well Problem
Potential
V(x)={0,∞,0<x<aelse
Wave function
d2dx2ψ(x)+2mE?2ψ(x)=0
General Solution
ψ(x)=Asin(kx+δ),k=2mE????√?
Properties
- Bounded
- Discrete(束缚态→离散谱,非束缚态→连续谱)
- Exact solution
Boundary condition
ψ(0)=0,ψ(a)=0
Solution
ψn(x)?????2a??√sin(nπxa),0,0<x<aelse
En=?2π2n22ma2
Finite Square Potential Well Problem
Potential
V(x)={0,V0,|x|<a2else
Wave function
?????????d2dx2ψ(x)+2mE?2ψ(x)=0,d2dx2ψ(x)+(2mE?2?V0)ψ(x)=0,|x|<a2else
General Solution
?????????ψ(x)~e±βx,β=2m(V0?E)??????????√?,ψ(x)~sinkx,coskx,e±ikx,k=2mE????√?,|x|<a2else
Because
e±ikx does not have a definite parity, it cannot be a solution.
Properties
- Bounded
- Discrete
- Not exact solution
Boundary condition
???????ψ(x)→0,[lncoskx]′x=a2=[lne?βx]′x=a2,[lnsinkx]′x=a2=[lne?βx]′x=a2,|x|→∞(even parity)(odd parity)
Solution
ψn(x)=?????2a??√sin(nπxa),0,0<x<aelse
En=?2π2n22ma2
The minimum energy is not zero.
Reduced Equations
?????????ktan(ka2)=β?kcot(ka2)=β?{ξtanξ=η,?ξcotξ=η,even parityodd parity
where
ξ=ka2,η=βa2
The above equation can only be solved numerically.
Finite Square Potential Barrier Problem
Potential
V(x)={V0,0,0<x<aelse
Wave function
?????????d2dx2ψ(x)+2m(E?V0)?2ψ(x)=0,d2dx2ψ(x)+2mE?2ψ(x)=0,0<x<aelse
General Solution
ψ(x)=???Aeκx+Be?κx,eikx+Qe?ikx,Seikx,0<x<ax<0x>a
where
κ=2m(V0?E)??????????√?,k=2mE????√?,
Q is the reflection coefficient amplitude and
S is the transmission coefficient amplitude.
T=|S|2,R=|Q|2=1?T
Properties
- Bounded
- Discrete(束缚态→离散谱,非束缚态→连续谱)
- Exact solution
Boundary condition
?????????????1+Q=A+Bikκ(1?Q)=A?BAeκa+Be?κa=SeikaAeκa?Be?κa=ikκSeika
Solution
???????????T=|S|2=4k2κ2(k2+κ2)2sh2κa+4k2κ2,R=|Q|2=(k2+κ2)2sh2κa(k2+κ2)2sh2κa+4k2κ2=1?T
Discussion
- Quantum tunneling effect: even E<V0,T≠0, even E>V0,T≠1
1D Harmonic Oscillator Problem
Potential
V(x)=12mω2x2
Thanks to Prof. Guo Hong