码迷,mamicode.com
首页 > 其他好文 > 详细

【Longest Palindromic Substring】cpp

时间:2015-05-06 17:07:28      阅读:140      评论:0      收藏:0      [点我收藏+]

标签:

题目:

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

代码:

class Solution {
public:
    string longestPalindrome(string s) {
        const size_t len = s.length();
        // initialize dp matrix
        bool dp[len][len];
        std::fill_n(&dp[0][0], len*len, false);
        dp[0][0] = true;
        for ( size_t i = 1; i < len; ++i )
        {
            dp[i][i] = true;
            dp[i][i-1] = true;
        }
        // dp process
        size_t left = 0;
        size_t longest_palindrome = 1;
        for ( size_t k = 2; k <= len; ++k )
        {
            for ( size_t i = 0; i <= len-k; ++i )
            {
                if ( dp[i+1][i+k-2] && s[i]==s[i+k-1] )
                {
                    dp[i][i+k-1] = true;
                    if ( longest_palindrome < k )
                    {
                        left = i;
                        longest_palindrome = k;
                    }
                }
            }
        }
        return s.substr(left,longest_palindrome); 
    }
};

tips:

采用动态规划思路,时间复杂度O(n²)。代码并不是最优的,但是相对简洁的(不用考虑奇数偶数的情况)。

判断一个子串是否是回文可以用其“掐头去尾”后的子子串是来判断:

a. 子子串是回文

b. 头等于尾

同时满足a,b则一定是回文;否则,一定不是回文。

 

这里设定一个dp[][]数组:dp[i][j]=true表示i到j这个子串是回文,dp[i][j]=false表示i到j这个子串不是回文。

对dp数组初始化时候需要注意两点:

(1)

显然dp[i][i]表示单个元素,都是回文,初始化为true。

(2)

dp[i][i-1]这种情况按理说是不存在的(因为左边的index不能大于右边的index),但是当k=2的时候,判断相邻两个字符是否构成回文的时候

有“dp[i+1][i+k-2]”这个情况,显然dp[i+1][i],此时这个判断其实是不起作用的,只用判断相邻两个元素相等即可;但是为了代码的简洁(都在一个循环中写下),强制令dp[1][0]、dp[2][1]、...、dp[len-1][len-2]都为true。

 

这里第一层循环k代表可能回文的长度(从2起),第二层循环i代表回文开始的位置。这里有一点要注意,就是k是可以取到len这个值的(即整个字符串就是一个大回文);并且,i是可以取到len-k的(因为最后一个字符的下标是len-1到len-k长度正好是k)。这两个边界细节要注意。

 

另,还有大Manacher算法,可以做到O(n)时间复杂度。以后再研究一下。

【Longest Palindromic Substring】cpp

标签:

原文地址:http://www.cnblogs.com/xbf9xbf/p/4482319.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!