码迷,mamicode.com
首页 > 其他好文 > 详细

UVA11005 Semi-prime H-numbers(筛法)

时间:2015-05-07 06:30:38      阅读:217      评论:0      收藏:0      [点我收藏+]

标签:筛法   数论   

UVA - 11105
Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

 Status

Description

技术分享

Problem A: Semi-prime H-numbers

技术分享This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it‘s the product of three H-primes.

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample input

21 
85
789
0

Output for sample input

21 0
85 5
789 62

Don Reble

Source

Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: More Advanced Topics :: Problem Decomposition :: Two Components - Involving DP 1D RSQ/RMQ
Root :: AOAPC II: Beginning Algorithm Contests (Second Edition) (Rujia Liu) :: Chapter 10. Maths :: Exercises
Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 2. Mathematics :: Number Theory :: Exercises: Beginner

 Status



先筛出所有的H素数,然后暴力搞。。。不知道大家求H半素数有没有什么更好的算法呢?虽然程序跑的很快,但是还是想知道是否有更快的。

#include<bits/stdc++.h>
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 5;
bool check[maxn];
int f[maxn];
void init(int n)
{
    memset(check,0,sizeof check);
    vector<int> res;
    for(int i = 5; i <= n; i += 4) {
        if(!check[i])res.push_back(i);
        int sz = res.size();
        for(int j = 0; j < sz; j++) {
            ll t = (ll)i*res[j];
            if(t>n)break;
            check[t] = true;
            if(i%res[j]==0)break;
        }
    }
    memset(f,0,sizeof f);
    int sz = res.size();
    for(int i = 0; i < sz; i++) {
        for(int j = i; j < sz; j++) {
            ll t = (ll)res[i] * res[j];
            if(t>n)break;
            f[t] = 1;
        }
    }
    for(int i = 1; i <= n; i++)f[i] += f[i-1];
}
int main()
{
    int n;
    init(maxn-5);
    while(~scanf("%d",&n)&&n) {
        printf("%d %d\n", n, f[n]);
    }
    return 0;
}

UVA11005 Semi-prime H-numbers(筛法)

标签:筛法   数论   

原文地址:http://blog.csdn.net/acvcla/article/details/45547017

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!