题目类型: 搜索
样例输入:
1 1 * 3 5 *@*@* **@** *@*@* 1 8 @@****@* 5 5 ****@ *@@*@ *@**@ @@@*@ @@**@ 0 0
样例输出:
0 1 2 2
分析:
这一题可以说是搜索中最基础的一题之一。 要找出相连在一起的有多少块, 因此, 依次枚举,遇到@时就进行搜索,用深搜,广搜都行,目的是把相连的@都标记为已访问。
下面给出用DFS(深搜)和BFS(广搜)的代码
DFS 1 :递推
#include <iostream> #include <cstring> #include <cstdlib> using namespace std; int m,n,idx[105][105]; char pic[105][105]; void dfs(int r,int c,int id) { if (r<0 || r>=m || c<0 || c>= n) return ; if(idx[r][c] >0 || pic[r][c] != '@') return ; idx[r][c] = id; for (int dr = -1;dr <= 1;dr++) { for (int dc = -1;dc <= 1;dc++) { if(dr != 0 || dc != 0) dfs(r+dr,c+dc,id); } } } int main() { int i,j,cnt; while (cin>>m>>n,m&&n) { for (i=0;i<m;i++) { cin>>pic[i]; } cnt = 0; memset(idx,0,sizeof(idx)); for (i=0;i<m;i++) { for (j=0;j<n;j++) { if(idx[i][j]==0 && pic[i][j] == '@') dfs(i,j,++cnt); } } cout<<cnt<<endl; } return 0; }这种方法当数据量很大时,可能会有栈溢出
#include <iostream> #include <cstring> #include <cstdlib> #include <stack> using namespace std; int m,n,idx[105][105]; char pic[105][105]; struct Node {int x;int y;}; stack<Node> st; void dfs(int r,int c) { // if (r<0 || r>=m || c<0 || c>= n) return ; // if(idx[r][c] >0 || pic[r][c] != '@') return ; while(!st.empty()) st.pop(); Node temp; temp.x = r; temp.y = c; st.push(temp); idx[r][c] = 1; while (!st.empty()) { temp = st.top(); st.pop(); for (int dr = -1;dr <= 1;dr++) { for (int dc = -1;dc <= 1;dc++) { int drr = dr+temp.x; int dcc = dc+temp.y; if((dr != 0 || dc != 0) && drr>=0 && drr<m && dcc>=0 && dcc<n && pic[drr][dcc] == '@' && !idx[drr][dcc]) // dfs(r+dr,c+dc,id); { Node t; idx[drr][dcc] =1; t.x = drr; t.y = dcc; st.push(t); } } } } } int main() { int i,j,cnt; while (cin>>m>>n,m&&n) { for (i=0;i<m;i++) { cin>>pic[i]; } cnt = 0; memset(idx,0,sizeof(idx)); for (i=0;i<m;i++) { for (j=0;j<n;j++) { if(idx[i][j]==0 && pic[i][j] == '@') { cnt++; dfs(i,j); } } } cout<<cnt<<endl; } return 0; }
#include <iostream> #include <cstring> #include <cstdlib> #include <stack> #include <queue> using namespace std; int m,n,idx[105][105]; char pic[105][105]; struct Node {int x;int y;}; //stack<Node> st; //queue<Node> st; Node que[105]; void dfs(int r,int c) { // if (r<0 || r>=m || c<0 || c>= n) return ; // if(idx[r][c] >0 || pic[r][c] != '@') return ; //while(!st.empty()) st.pop(); que[0].x = r; que[0].y = c; idx[r][c] = 1; int front=0; int rear=1; while (front < rear) { Node temp=que[front++]; for (int dr = -1;dr <= 1;dr++) { for (int dc = -1;dc <= 1;dc++) { int drr = dr+temp.x; int dcc = dc+temp.y; if((dr != 0 || dc != 0) && drr>=0 && drr<m && dcc>=0 && dcc<n && pic[drr][dcc] == '@' && !idx[drr][dcc]) { idx[drr][dcc] =1; que[rear].x = drr; que[rear].y = dcc; rear++; } } } } } int main() { int i,j,cnt; while (cin>>m>>n,m&&n) { for (i=0;i<m;i++) { cin>>pic[i]; } cnt = 0; memset(idx,0,sizeof(idx)); for (i=0;i<m;i++) { for (j=0;j<n;j++) { if(idx[i][j]==0 && pic[i][j] == '@') { cnt++; dfs(i,j); } } } cout<<cnt<<endl; } return 0; }
原文地址:http://blog.csdn.net/xinwen1995/article/details/45542221