标签:
Really interesting problem. Naive solution would be O(n^3). But please note the pattern here: (i, j, k) -> (i + 1, j + 1, k) -> (i + 2, j + 2, k)... this sequence shares the same pattern, so now the problem can be deducted to "what is the longest consecutive sequence with sum <= k" -- that is, sliding window!
#include <cmath> #include <cstdio> #include <vector> #include <iostream> #include <algorithm> #include <climits> #include <unordered_map> using namespace std; #define MAX_LEN 1500 size_t _calc(string &s1, string &s2, int i, int j, size_t k) { size_t len = s1.length(); size_t ret = 0; size_t cnt = std::min(len - i, len - j); vector<int> rec(cnt, 0); size_t o = 0; while(o < cnt) { rec[o] = s1[i + o] == s2[j + o] ? 0 : 1; o ++; } // sliding window size_t curr_diff = 0; int s = 0, e = 0; while(e < cnt) { // expand while((curr_diff <= k) && (e < cnt)) { curr_diff += rec[e]; if (curr_diff <= k) { ret = std::max(ret, size_t(e - s + 1)); } e++; } if(e >= cnt) break; // shrink while((curr_diff > k) && (s < e)) { curr_diff -= rec[s++]; } } return ret; } size_t calc(string &s1, string &s2, int k) { size_t len = s1.length(); size_t ret = 0; int i = 0, j = 0; for(j = 0; j < len; j ++) { size_t r = _calc(s1, s2, i, j, k); ret = std::max(ret, r); } j = 0; for(int i = 1; i < len; i ++) { size_t r = _calc(s1, s2, i, j, k); ret = std::max(ret, r); } return ret; } int main() { int t; cin >> t; while (t--) { int k; cin >> k; char buf1[MAX_LEN + 1] = {0}; char buf2[MAX_LEN + 1] = {0}; scanf("%s %s", buf1, buf2); string str1(buf1); string str2(buf2); size_t r = calc(str1, str2, k); cout << r << endl; } return 0; }
Please note: "rec[o] = s1[i + o] == s2[j + o] ? 0 : 1;" has different behavior between Linux\Windows.. so, i put "o++" after this line, and it works. Weird..
标签:
原文地址:http://www.cnblogs.com/tonix/p/4486645.html