码迷,mamicode.com
首页 > 其他好文 > 详细

[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.2

时间:2015-05-11 14:17:24      阅读:120      评论:0      收藏:0      [点我收藏+]

标签:

计算 $\dps{\int_{-\infty}^{+\infty}\frac{\rd x}{(x^2+2x+2)^n}}$. (中国科学院)

解答: 设 $$\bex I_n=\int_{\bbR} \frac{\rd x}{(x^2+2x+2)^n} =\int_{\bbR} \frac{\rd (x+1)}{[(x+1)^2+1]^n} =\int_{\bbR}\frac{\rd t}{(t^2+1)^n}=2\int_0^\infty \frac{\rd t}{(t^2+1)^n}, \eex$$ 则由分部积分, $$\beex \bea I_n&=2\frac{t}{(t^2+1)^n}|_0^\infty +4n \int_0^\infty \frac{t^2}{(t^2+1)^{n+1}}\rd t\\ &=4n\int_0^\infty \frac{(t^2+1)-1}{(t^2+1)^{n+1}}\rd t\\ &=2n\sex{I_n-I_{n+1}}. \eea \eeex$$ 故 $$\bex I_{n+1}=\frac{2n-1}{2n}I_n,\quad I_n=\frac{2n-3}{2n-2}I_{n-1}=\cdots =\frac{(2n-3)!!}{(2n-2)!!}I_1=\frac{(2n-3)!!}{(2n-2)!!}\cdot \frac{\pi}{2}. \eex$$

[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.2

标签:

原文地址:http://www.cnblogs.com/zhangzujin/p/4494195.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!