标签:
由于OpenStack Kilo增加很多针对NUMA体系结构的增强功能,所以又重新温习了下NUMA相关的知识,简单做个笔记。
1. NUMA的几个概念(Node,socket,core,thread)
对于socket,core和thread会有不少文章介绍,这里简单说一下,具体参见下图:
一句话总结:socket就是主板上的CPU插槽; Core就是socket里独立的一组程序执行的硬件单元,比如寄存器,计算单元等; Thread:就是超线程hyperthread的概念,逻辑的执行单元,独立的执行上下文,但是共享core内的寄存器和计算单元。
NUMA体系结构中多了Node的概念,这个概念其实是用来解决core的分组的问题,具体参见下图来理解(图中的OS CPU可以理解thread,那么core就没有在图中画出),从图中可以看出每个Socket里有两个node,共有4个socket,每个socket 2个node,每个node中有8个thread,总共4(Socket)× 2(Node)× 8 (4core × 2 Thread) = 64个thread。
另外每个node有自己的内部CPU,总线和内存,同时还可以访问其他node内的内存,NUMA的最大的优势就是可以方便的增加CPU的数量,因为Node内有自己内部总线,所以增加CPU数量可以通过增加Node的数目来实现,如果单纯的增加CPU的数量,会对总线造成很大的压力,所以UMA结构不可能支持很多的核。
《此图出自:NUMA Best Practices for Dell PowerEdge 12th Generation Servers》
根据上面提到的,由于每个node内部有自己的CPU总线和内存,所以如果一个虚拟机的vCPU跨不同的Node的话,就会导致一个node中的CPU去访问另外一个node中的内存的情况,这就导致内存访问延迟的增加
2. 如何查看机器的NUMA拓扑结构
比较常用的命令就是lscpu,具体输出如下:
dylan@hp3000:~$ lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 48 //共有48个逻辑CPU(threads) On-line CPU(s) list: 0-47 Thread(s) per core: 2 //每个core有2个threads Core(s) per socket: 6 //每个socket有6个cores Socket(s): 4 //共有4个sockets NUMA node(s): 4 //共有4个NUMA nodes Vendor ID: GenuineIntel CPU family: 6 Model: 45 Stepping: 7 CPU MHz: 1200.000 BogoMIPS: 4790.83 Virtualization: VT-x L1d cache: 32K //L1 data cache 32k L1i cache: 32K //L1 instruction cache 32k (牛x机器表现,冯诺依曼+哈弗体系结构) L2 cache: 256K L3 cache: 15360K NUMA node0 CPU(s): 0-5,24-29 NUMA node1 CPU(s): 6-11,30-35 NUMA node2 CPU(s): 12-17,36-41 NUMA node3 CPU(s): 18-23,42-47从上图输出,可以看出当前机器有4个sockets,每个sockets包含1个numa node,每个numa node中有6个cores,每个cores包含2个thread,所以总的threads数量=4(sockets)×1(node)×6(cores)×2(threads)=48.
另外,也可以通过下面的脚本来打印出当前机器的socket,core和thread的数量。
#!/bin/bash # Simple print cpu topology # Author: kodango function get_nr_processor() { grep ‘^processor‘ /proc/cpuinfo | wc -l } function get_nr_socket() { grep ‘physical id‘ /proc/cpuinfo | awk -F: ‘{ print $2 | "sort -un"}‘ | wc -l } function get_nr_siblings() { grep ‘siblings‘ /proc/cpuinfo | awk -F: ‘{ print $2 | "sort -un"}‘ } function get_nr_cores_of_socket() { grep ‘cpu cores‘ /proc/cpuinfo | awk -F: ‘{ print $2 | "sort -un"}‘ } echo ‘===== CPU Topology Table =====‘ echo echo ‘+--------------+---------+-----------+‘ echo ‘| Processor ID | Core ID | Socket ID |‘ echo ‘+--------------+---------+-----------+‘ while read line; do if [ -z "$line" ]; then printf ‘| %-12s | %-7s | %-9s |\n‘ $p_id $c_id $s_id echo ‘+--------------+---------+-----------+‘ continue fi if echo "$line" | grep -q "^processor"; then p_id=`echo "$line" | awk -F: ‘{print $2}‘ | tr -d ‘ ‘` fi if echo "$line" | grep -q "^core id"; then c_id=`echo "$line" | awk -F: ‘{print $2}‘ | tr -d ‘ ‘` fi if echo "$line" | grep -q "^physical id"; then s_id=`echo "$line" | awk -F: ‘{print $2}‘ | tr -d ‘ ‘` fi done < /proc/cpuinfo echo awk -F: ‘{ if ($1 ~ /processor/) { gsub(/ /,"",$2); p_id=$2; } else if ($1 ~ /physical id/){ gsub(/ /,"",$2); s_id=$2; arr[s_id]=arr[s_id] " " p_id } } END{ for (i in arr) printf "Socket %s:%s\n", i, arr[i]; }‘ /proc/cpuinfo echo echo ‘===== CPU Info Summary =====‘ echo nr_processor=`get_nr_processor` echo "Logical processors: $nr_processor" nr_socket=`get_nr_socket` echo "Physical socket: $nr_socket" nr_siblings=`get_nr_siblings` echo "Siblings in one socket: $nr_siblings" nr_cores=`get_nr_cores_of_socket` echo "Cores in one socket: $nr_cores" let nr_cores*=nr_socket echo "Cores in total: $nr_cores" if [ "$nr_cores" = "$nr_processor" ]; then echo "Hyper-Threading: off" else echo "Hyper-Threading: on" fi echo echo ‘===== END =====‘
标签:
原文地址:http://blog.csdn.net/ustc_dylan/article/details/45667227