标签:
1. 定义
一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。
2. 内容
错排问题实质是一种递推。
n个有序元素应有n!种不同的排列。如若一个排列式的所有的元素都不在原来的位置上,则称这个排列为错排。
任给一个n,求出1,2,……,n的错排个数Dn共有多少个?
递归关系式为:D(n)=(n-1)(D(n-1)+D(n-2)), 其中 D(1)=0, D(2)=1
可以得到:
错排公式为 f(n) = n![1-1/1!+1/2!-1/3!+……+(-1)^n*1/n!] , 其中,n!=1*2*3*.....*n,
特别地,有0!=0,1!=1.
3. 理解
n 个不同元素的一个错排可由下述两个步骤完成:
第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。
第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若1号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同 的情况发生:
1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k
个位置(也就是说本来准备放到k位置为元素,可以放到1位置中),于是形成(包括 k 号元素在内的) n - 1 个元 素的“错排”,有 f(n -
1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。
根据乘法原理, n 个不同元素的错排种数
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。
4. 应用
hdu2048(神、上帝以及老天爷)
标签:
原文地址:http://www.cnblogs.com/yanyang/p/4498015.html