码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj 3283 扩展BSGS + 快速阶乘

时间:2015-05-12 22:17:51      阅读:237      评论:0      收藏:0      [点我收藏+]

标签:

 

T2  扩展BSGS

技术分享

 

T3 快速阶乘

给定整数n,质数p和正整数c,求整数s和b,满足n! / pb = s mod pc

考虑每次取出floor(n/p)个p因子,然后将问题转化为子问题。

 

技术分享
  1 /**************************************************************
  2     Problem: 3283
  3     User: idy002
  4     Language: C++
  5     Result: Accepted
  6     Time:1704 ms
  7     Memory:12380 kb
  8 ****************************************************************/
  9  
 10 #include <cstdio>
 11 #include <cstring>
 12 #include <cmath>
 13  
 14 typedef long long dnt;
 15 void exgcd( dnt a, dnt b, dnt &d, dnt &x, dnt &y ) {
 16     if( b==0 ) {
 17         x=1, y=0, d=a;
 18     } else {
 19         exgcd(b,a%b,d,y,x);
 20         y-=a/b*x;
 21     }
 22 }
 23 dnt inv( int a, int n ) {
 24     dnt d, x, y;
 25     exgcd(a,n,d,x,y);
 26     return d==1 ? (x%n+n)%n : -1;
 27 }
 28 dnt mpow( dnt a, dnt b, dnt c ) {
 29     dnt rt;
 30     for( rt=1; b; b>>=1,a=a*a%c )
 31         if( b&1 ) rt=rt*a%c;
 32     return rt;
 33 }
 34  
 35 namespace Task1 {
 36     void sov( dnt a, dnt b, dnt c ) {
 37         printf( "%lld\n", mpow(a,b,c) );
 38     }
 39 };
 40 namespace Task2 {
 41     const int mod = 38281;
 42     const int len = mod<<3;
 43     struct Hash {
 44         int head[mod], val[len], rat[len], next[len], ntot;
 45         void init() { 
 46             ntot=0; 
 47             memset( head, 0, sizeof(head) );
 48         }
 49         void insert( int v, int r ) {
 50             int k = v % mod;
 51             ntot++;
 52             next[ntot] = head[k];
 53             val[ntot] = v;
 54             rat[ntot] = r;
 55             head[k] = ntot;
 56         }
 57         int query( int v ) {
 58             int k = v % mod;
 59             for( int t=head[k]; t; t=next[t] ) 
 60                 if( val[t]==v ) return rat[t];
 61             return -1;
 62         }
 63     }hash;
 64      
 65     dnt gcd( dnt a, dnt b ) {
 66         return b ? gcd(b,a%b) : a;
 67     }
 68     int bsgs( dnt s, dnt a, dnt b, dnt c ) {
 69         hash.init();
 70         int m = ceil(sqrt(c));
 71         for( int i=0; i<m; i++ ) {
 72             if( s==b ) return i;
 73             hash.insert( s, i );
 74             s = s*a % c;
 75         }
 76         dnt am = 1;
 77         for( int i=0; i<m; i++ )
 78             am = am*a % c;
 79         am = inv(am,c);
 80         b = b*am % c;
 81         for( int i=m; i<c; i+=m ) {
 82             int j = hash.query( b );
 83             if( j!=-1 ) return i+j;
 84             b = b*am % c;
 85         }
 86         return -1;
 87     }
 88     int exbsgs( dnt a, dnt b, dnt c ) {
 89         dnt s = 1;
 90         for( int i=0; i<32; i++ ) {
 91             if( s==b ) return i;
 92             s = s*a % c;
 93         }
 94         dnt cd;
 95         s = 1;
 96         int rt = 0;
 97         while( (cd=gcd(a,c))!=1 ) {
 98             rt++;
 99             s*=a/cd;
100             if( b%cd ) return -1;
101             b/=cd;
102             c/=cd;
103             s%=c;
104         }
105         int p = bsgs(s,a,b,c);
106         if( p==-1 ) return -1;
107         return rt + p;
108     }
109     void sov( int a, int b, int c ) {
110         int res = exbsgs(a,b,c);
111         if( res==-1 ) printf( "Math Error\n" );
112         else printf( "%d\n", res );
113     }
114 };
115 namespace Task3 {
116     struct Pair {
117         int s, k;
118         Pair( int s, int k ):s(s),k(k){}
119     };
120     dnt aa[50], mm[50];
121     dnt pres[1001000];
122     dnt pp[50], cc[50], ppp[50], tot;
123  
124     dnt china( int n, dnt *a, dnt *m ) {
125         int M=1;
126         for( int i=0; i<n; i++ ) 
127             M *= m[i];
128         int rt = 0;
129         for( int i=0; i<n; i++ ) {
130             dnt Mi = M/m[i];
131             rt = (rt+Mi*inv(Mi,m[i])*a[i]) % M;
132         }
133         return rt;
134     }
135     void init( int p, int pp ) {
136         pres[0] = 1;
137         for( int i=1; i<=pp; i++ ) {
138             if( i%p==0 ) {
139                 pres[i] = pres[i-1];
140             } else {
141                 pres[i] = pres[i-1]*i % pp;
142             }
143         }
144     }
145     Pair split( int n, int p, int c, int pp ) {
146         int b = n/p;
147         if( b==0 ) {
148             return Pair( pres[n], 0 );
149         } else {
150             Pair pr = split( b, p, c, pp );
151             return Pair( (pr.s*pres[n%pp]%pp) * mpow(pres[pp],n/pp,pp) % pp, pr.k+b );
152         }
153     }
154     void sov( int m, int n, int c ) {
155         tot = 0;
156         for( int i=2; i*i<=c; i++ ) {
157             if( c%i==0 ) {
158                 pp[tot] = i;
159                 cc[tot] = 0;
160                 ppp[tot] = 1;
161                 while( c%i==0 ) {
162                     cc[tot]++;
163                     ppp[tot] *= pp[tot];
164                     c/=i;
165                 }
166                 tot++;
167             }
168         }
169         if( c!=1 ) {
170             pp[tot] = c;
171             cc[tot] = 1;
172             ppp[tot] = c;
173             tot++;
174             c = 1;
175         }
176         for( int i=0; i<tot; i++ ) {
177             init(pp[i],ppp[i]);
178             Pair pn = split( n, pp[i], cc[i], ppp[i] );
179             Pair pa = split( m, pp[i], cc[i], ppp[i] );
180             Pair pb = split( n-m, pp[i], cc[i], ppp[i] );
181             if( pn.k-pa.k-pb.k >= cc[i] ) {
182                 aa[i] = 0;
183                 mm[i] = ppp[i];
184             } else {
185                 aa[i] = pn.s * (inv(pa.s,ppp[i])*inv(pb.s,ppp[i])%ppp[i]) % ppp[i];
186                 for( int j=0; j<pn.k-pa.k-pb.k; j++ )
187                     aa[i] = (dnt) aa[i]*pp[i] % ppp[i];
188                 mm[i] = ppp[i];
189             }
190         }
191 /*
192         fprintf( stderr, "tot=%d\n", tot );
193         for( int i=0; i<tot; i++ )
194             fprintf( stderr, "%d %d\n", aa[i], mm[i] );
195 */
196         printf( "%lld\n", china(tot,aa,mm) );
197     }
198 };
199  
200 int main() {
201     int n;
202     scanf( "%d", &n );
203     for( int i=1,opt,y,z,p; i<=n; i++ ) {
204         scanf( "%d%d%d%d", &opt, &y, &z, &p );
205         if( opt==1 )
206             Task1::sov( y, z, p );
207         else if( opt==2 ) 
208             Task2::sov( y, z, p );
209         else
210             Task3::sov( y, z, p );
211     }
212 }
View Code

bzoj 3283 扩展BSGS + 快速阶乘

标签:

原文地址:http://www.cnblogs.com/idy002/p/4498554.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!