标签:
题目大意:
F[0]=0
F[1]=1
F[n+2]=F[n+1]+F[n]
求F[n] mod 104。
| F[n+2] | 
| F[n+1] | 
=
| 1 | 1 | 
| 1 | 0 | 
*
| F[n+1] | 
| F[n] | 
记这个矩阵为A,则有:
| F[n+1] | 
| F[n] | 
=
An
*
| F[1] | 
| F[0] | 
=
An
*
| 1 | 
| 0 | 
然后可以快速幂

#include<cstdio>
#include<vector>
using namespace std;
typedef vector<int> vec;
typedef vector<vec> mat;
mat operator * (const mat &a,const mat &b)
{
	mat c(a.size(),vec(b[0].size()));
	for(int i=0;i<a.size();++i)
	  for(int j=0;j<b[0].size();++j)
	    for(int k=0;k<b.size();++k)
	      c[i][j]=(c[i][j]+a[i][k]*b[k][j])%10000;
	return c;
}
mat Quick_Pow(mat x,int p)
{
	if(!p)
	  {
	  	mat t(2,vec(2));
	  	t[0][0]=1; t[1][1]=1;
	  	return t;
	  }
	mat res=Quick_Pow(x,p>>1);
	res=res*res;
	if(p&1) res=res*x;
	return res;
}
int n;
int main()
{
	scanf("%d",&n);
	mat A(2,vec(2));
	A[0][0]=1; A[0][1]=1; A[1][0]=1;
	printf("%d\n",Quick_Pow(A,n)[1][0]);
	return 0;
}
【矩阵乘法】【快速幂】【递推】斐波那契数列&&矩乘优化递推模板
标签:
原文地址:http://www.cnblogs.com/autsky-jadek/p/4499725.html