码迷,mamicode.com
首页 > 其他好文 > 详细

【BZOJ】【2765】【JLOI2010】铁人双项比赛

时间:2015-05-13 12:20:06      阅读:169      评论:0      收藏:0      [点我收藏+]

标签:

计算几何/半平面交


  本来我是想去写POJ 1755的,然后想起了这道跟它很像的题,但应该是弱化版,所以就先写了这个……

  我们可以发现每个人的总用时,与k是呈一次函数关系的:$time_i=\frac{k}{Vrun_i}+\frac{S-k}{Vride_i}$

  然而我们要找的是某个k,使得$min(time_n-time_i)$最大

  那么就是一个线性规划问题了……这个也可以用半平面交来做……(蒟蒻并不会单纯形)

  下面的部分为了偷懒简洁我就用$a_i$和$b_i$来代替两种速度……

  我一开始想的做法是:维护一个$y=(\frac{1}{a_i}-\frac{1}{b_i})*x+\frac{S}{b_i}$的最小值(上凸壳?),然后由于线性分段函数的极值一定在分界点处取到(BZOJ 1038 瞭望塔),所以可以枚举分界点计算答案。

  然而不会写……后来膜拜了lyd神犇的代码,发现:

    这题$n\leq 100$,所以找到可能成为分界点的点,即所有直线的交点,暴力更新答案就好了……

    然后还有一个地方是将不等式重新变形了一下,将第n条直线直接减到前面n-1条直线中……

  无限ym……

技术分享
 1 /**************************************************************
 2     Problem: 2765
 3     User: Tunix
 4     Language: C++
 5     Result: Accepted
 6     Time:40 ms
 7     Memory:1276 kb
 8 ****************************************************************/
 9  
10 //BZOJ 2765
11 #include<cmath>
12 #include<cstdio>
13 #include<cstring>
14 #include<cstdlib>
15 #include<iostream>
16 #include<algorithm>
17 #include<iomanip>
18 #define rep(i,n) for(int i=0;i<n;++i)
19 #define F(i,j,n) for(int i=j;i<=n;++i)
20 #define D(i,j,n) for(int i=j;i>=n;--i)
21 using namespace std;
22  
23 const int N=110;
24 /*******************template********************/
25 typedef long double lf;
26 #define eps 1e-12
27 int n,num;
28 lf a[N],b[N],c[N],d[N],S,anst,ansk;
29  
30 void calc(lf k){
31     lf t=1e100;
32     F(i,1,n-1) t=min(t,k*c[i]+d[i]);
33     if (t>anst) anst=t,ansk=k;
34 }
35  
36 int main(){
37 #ifndef ONLINE_JUDGE
38     freopen("2765.in","r",stdin);
39 //  freopen("2765.out","w",stdout);
40 #endif
41     cin >>S>>n;
42     F(i,1,n) cin >> a[i] >> b[i];
43     F(i,1,n-1){
44         c[i]=1/a[i]-1/b[i]-1/a[n]+1/b[n];
45         d[i]=S/b[i]-S/b[n];
46     }
47  
48     anst=-1e100;
49     F(i,1,n-1) F(j,i+1,n-1){
50         if (fabs(c[i]-c[j])<eps) continue;
51         lf k=(d[j]-d[i])/(c[i]-c[j]);
52         if (k<eps || k>S-eps) continue;
53         calc(k);
54     }
55     calc(0); calc(S);
56     anst*=3600;
57     if (anst<-eps) puts("NO");
58     else{
59         if (anst<eps) anst=0;
60         cout<<setprecision(2)<<fixed<<ansk<< <<S-ansk<< ;
61         cout<<setprecision(0)<<fixed<<anst<<endl;
62     }
63     return 0;
64 }
View Code

2765: [JLOI2010]铁人双项比赛

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 477  Solved: 117
[Submit][Status][Discuss]

Description

铁 人双项比赛是吉林教育学院的一项传统体育项目。该项目比赛由长跑和骑自行车组成,参赛选手必须先完成k公里的长跑,然后完成r公里的骑车,才能到达终点。 每个参赛选手所擅长的项目不同,有的擅长长跑,有的擅长骑车。如果总赛程s=k+r一定,那么K越大,对擅长长跑的选手越有利;k越小,对擅长骑车的选手 越有利。
 
现在给定总赛程s,以及每个选手长跑和骑车的平均速度,请你求出对于某个指定的选手最有利的k和r。所谓最有利,是指选择了这个k和r后,该选手可以获得冠军,且领先第2名尽量地多。

Input

你的程序从文件读入输入数据。
输入的第一行是两个正整s和n,s表示总赛程(单位为公里,s≤231),n表示参赛总人数(2≤n≤100)。
接下来的n行每行是两个实数,分别表示每个选手长跑的平均速度和骑车的平均速度(单位为千米/小时)。
第n个选手就是指定的选手,你的任务是求出对他最有利的k和r。

Output

 
你的程序的输出包括三个数k,r, t,分别表示对第n号选手最有利的k和r(浮点数,保留小数点后2位),以及在选择k和r的情况下,第n号选手最多可以领先第2名多少秒(四舍五入到整数);如果另一个选手和该选手并列第一,则t i=0。倘若无论选择什么k,r都不能使第n号选手获胜,则输出“NO”。

Sample Input

100 3
10.0 40.0
20.0 30.0
15.0 35.0

Sample Output

14.29 85.71 612

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【2765】【JLOI2010】铁人双项比赛

标签:

原文地址:http://www.cnblogs.com/Tunix/p/4499876.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!