http://poj.org/problem?id=3233
ps转:
用二分方法求等比数列前n项和:即
原理:
(1)若n==0
(2)若n%2==0
(3)若n%2==1
代码如下:
LL sum(LL p,LL n) { if(n==0) return 1; if(n&1) return (1+pow(p,(n>>1)+1))*sum(p,n>>1); else return (1+pow(p,(n>>1)+1))*sum(p,(n-1)>>1)+pow(p,n>>1); }
那么类比等比数列,我们可以二分等比矩阵中的幂K,每次分成一半求。
下面是二分方法,这份代码可以做模板啦。。
#include <stdio.h> #include <iostream> #include <algorithm> #include <set> #include <map> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #define LL long long #define _LL __int64 #define eps 1e-8 #define PI acos(-1.0) using namespace std; const int maxn = 35; int mod,n,k,m; struct matrix { int mat[maxn][maxn]; //初始化为单位矩阵 void init() { memset(mat,0,sizeof(mat)); for(int i = 1; i <= maxn; i++) mat[i][i] = 1; } }a,res; //矩阵相加 matrix matrixAdd(matrix x, matrix y) { matrix tmp; for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) { tmp.mat[i][j] = x.mat[i][j] + y.mat[i][j]; if( tmp.mat[i][j] >= mod ) tmp.mat[i][j] %= mod; } return tmp; } //矩阵相乘 matrix matrixMul(matrix x, matrix y) { matrix tmp; memset(tmp.mat,0,sizeof(tmp.mat)); for(int i = 1; i <= n; i++) { for(int k = 1; k <= n; k++) { if(x.mat[i][k] == 0) continue; for(int j = 1; j <= n; j++) { tmp.mat[i][j] += x.mat[i][k] * y.mat[k][j]; if(tmp.mat[i][j] >= mod) tmp.mat[i][j] %= mod; } } } return tmp; } //矩阵求幂 matrix Mul(matrix x, int k) { matrix tmp; tmp.init(); while(k) { if(k & 1) tmp = matrixMul(tmp,x); x = matrixMul(x,x); k >>= 1; } return tmp; } // 求A + A^1 + A^2 + ... + A^k matrix Sum(matrix x, int k) { if(k == 1) return x; matrix tmp; tmp.init(); tmp = matrixAdd(tmp,Mul(x,k>>1)); tmp = matrixMul(tmp,Sum(x,k>>1)); if(k&1) tmp = matrixAdd(tmp,Mul(x,k)); return tmp; } void output() { for(int i = 1; i <= n; i++) { for(int j = 1; j <= n; j++) { if(j < n) printf("%d ",res.mat[i][j]); else printf("%d\n",res.mat[i][j]); } } } int main() { scanf("%d %d %d",&n,&k,&m); mod = m; for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) scanf("%d",&a.mat[i][j]); res = Sum(a,k); output(); return 0; }
还有一种更快的方法,便是构造矩阵。可惜不是我自己想出来的。膜拜,矩阵太强大了。
我们要求的矩阵设为A,先构造这样的矩阵
B = |A A|,可以计算B^2 = |A^2 A+A^2| .... B^k = |A^k A+A^2+...+A^k| ,
|0 1| |0 1 | |0 1 |
因此我们只需求出B ^k,然后取其右上角的n*n的矩阵便是答案。。
#include <stdio.h> #include <iostream> #include <algorithm> #include <set> #include <map> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #define LL long long #define _LL __int64 #define eps 1e-8 #define PI acos(-1.0) using namespace std; const int maxn = 100; int mod,n,k,m; struct matrix { int mat[maxn][maxn]; //初始化为单位矩阵 void init() { memset(mat,0,sizeof(mat)); for(int i = 1; i <= n; i++) mat[i][i] = 1; } }a,res; //矩阵相加 matrix matrixAdd(matrix x, matrix y) { matrix tmp; for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) { tmp.mat[i][j] = x.mat[i][j] + y.mat[i][j]; if( tmp.mat[i][j] >= mod ) tmp.mat[i][j] %= mod; } return tmp; } //矩阵相乘 matrix matrixMul(matrix x, matrix y) { matrix tmp; memset(tmp.mat,0,sizeof(tmp.mat)); for(int i = 1; i <= n; i++) { for(int k = 1; k <= n; k++) { if(x.mat[i][k] == 0) continue; for(int j = 1; j <= n; j++) { tmp.mat[i][j] += x.mat[i][k] * y.mat[k][j]; if(tmp.mat[i][j] >= mod) tmp.mat[i][j] %= mod; } } } return tmp; } //矩阵求幂 matrix Mul(matrix x, int k) { matrix tmp; tmp.init(); while(k) { if(k & 1) tmp = matrixMul(tmp,x); x = matrixMul(x,x); k >>= 1; } return tmp; } void output() { for(int i = 1; i <= n; i++) { for(int j = n+1; j <= n*2; j++) { if(j < n*2) printf("%d ",res.mat[i][j]); else printf("%d\n",res.mat[i][j]); } } } int main() { while(~scanf("%d %d %d",&n,&k,&m)) { mod = m; //扩大A矩阵,看成是4个小矩阵组合而成 for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) scanf("%d",&a.mat[i][j]); for(int i = 1; i <= n; i++) for(int j = n+1; j <= n*2; j++) a.mat[i][j] = a.mat[i][j-n]; for(int i = n+1; i <= n*2; i++) for(int j = 1; j <= n; j++) a.mat[i][j] = 0; for(int i = n+1; i <= n*2; i++) for(int j = n+1; j <= n*2; j++) n = n << 1; res = Mul(a,k); n = n >> 1; output(); } return 0; }
poj 3233 Matrix Power Series(等比矩阵求和),布布扣,bubuko.com
poj 3233 Matrix Power Series(等比矩阵求和)
原文地址:http://blog.csdn.net/u013081425/article/details/30265311