题目
Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example,
Given height = [2,1,5,6,2,3],
return 10.
思路
我们通过一个栈记录上升的柱子,如果如果下降的柱子,可以开始计算栈顶和之前柱子构建的矩形的面积。栈保存的是柱子的下标,而不是柱子的高度,目的是方便计算矩形的面积。遇到上升的柱子,就把柱子对应的下标压入栈。
代码
/*---------------------------------------
* 日期:2015-05-13
* 作者:SJF0115
* 题目: 84.Largest Rectangle in Histogram
* 网址:https://leetcode.com/problems/largest-rectangle-in-histogram/
* 结果:AC
* 来源:LeetCode
* 博客:
-----------------------------------------*/
#include <iostream>
#include <stack>
#include <vector>
using namespace std;
class Solution {
public:
int largestRectangleArea(vector<int>& height) {
int maxArea = 0;
int size = height.size();
if(size <= 0){
return maxArea;
}//if
// 下标
stack<int> indexStack;
int top,width;
for(int i = 0;i < size;++i){
// 栈空或上升序列 压入栈
if(indexStack.empty() || height[indexStack.top()] <= height[i]){
indexStack.push(i);
}//if
// 一旦下降了计算面积
else{
top = indexStack.top();
indexStack.pop();
// 栈为空 表示从第一个到当前的最低高度
width = indexStack.empty() ? i : (i - indexStack.top() - 1);
maxArea = max(maxArea,height[top] * width);
// 保持i的位置不变
--i;
}//else
}//for
// 计算剩余上升序列面积
while(!indexStack.empty()){
top = indexStack.top();
indexStack.pop();
width = indexStack.empty() ? size : (size - indexStack.top() - 1);
maxArea = max(maxArea,height[top] * width);
}//while
return maxArea;
}
};
int main(){
Solution s;
//vector<int> height = {2,1,5,6,2,3};
//vector<int> height = {2,1};
//vector<int> height = {1,2,3};
//vector<int> height = {2,1,2};
vector<int> height = {4,2,0,3,2,5};
cout<<s.largestRectangleArea(height)<<endl;
return 0;
}
运行时间
[LeetCode]*84.Largest Rectangle in Histogram
原文地址:http://blog.csdn.net/sunnyyoona/article/details/45695493