码迷,mamicode.com
首页 > 其他好文 > 详细

幂集的计算

时间:2015-05-14 00:41:43      阅读:582      评论:0      收藏:0      [点我收藏+]

标签:

求一个集合的幂集就是求一个集合的所有的子集,方法有穷举法,分治法,回溯等,这里使用回溯法。

回溯法是设计递归过程的一种重要的方法,它的求解过实质上是一个先序遍历一棵“状态树”的过程,只是这棵树不是遍历前预先建立的,而是隐含在遍历过程中的。

幂集中的每个元素是一个集合,它或是空集,或含集合A中一个元素,或含集合A中两个元素…… 或等于集合A。反之,从集合A 的每个元素来看,它只有两种状态:它或属幂集的无素集,或不属幂集的元素集。则求幂集p(A)的元素的过程可看成是依次对集合A中元素进行“取”或“舍”的过程,并且可以用一棵二叉树来表示过程中幂集元素的状态变化过程,树中的根结点表示幂集元素的初始状态(空集);叶子结点表示它的终结状态,而第i层的分支结点,则表示已对集合A中前i-1个元素进行了取舍处理的当前状态(左分支表示取,右分支表示舍 )。因此求幂集元素的过程即为先序遍历这棵状态树的过程。

求集合A={}的幂集可以从元素的角度看,即每个元素只有两个状态,取或者不去。则求幂集的过程可以看成是依次对集合A中元素进行取或者不取操作,

并且可以用一颗树二叉树来表示。

 

#include<iostream>
using namespace std;
typedef char Elem;
void output(Elem a[],int n)
{
    for(int i=1;i<n+1;i++)
    {
        if(a[i]!=0)
        {
            cout<<a[i];
        }
    }
    cout<<endl;
}

void GetPowerSet(int i,int n,Elem a[],Elem b[])
{
    if(i>=n)
        output(b,n);
    else
    {
        Elem x=a[i];
        b[i+1]=x;
        GetPowerSet(i+1,n,a,b);
        b[i+1]=0;
        GetPowerSet(i+1,n,a,b);
    }
}

int main()
{
    Elem a[100]={‘a‘,‘b‘,‘c‘,‘d‘};
    Elem b[100];
    GetPowerSet(0,4,a,b);
    return 0;
}

幂集的计算

标签:

原文地址:http://www.cnblogs.com/hutao886/p/4502064.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!