码迷,mamicode.com
首页 > 其他好文 > 详细

【POJ】3070Fibonacci(矩阵快速幂)

时间:2015-05-14 18:40:58      阅读:119      评论:0      收藏:0      [点我收藏+]

标签:

矩阵快速幂求斐波那契数

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 2;
const int mod = 10000;
LL n;
struct Matx{
    int mat[maxn][maxn];
    Matx(){
        memset(mat,0,sizeof(mat));
    }
};
Matx mult(int n1,int m1,Matx mat1,int n2,int m2,Matx mat2){
    Matx ans;
    for(int i = 0; i < n1; i++)
        for(int j = 0; j < m1; j++){
            for(int k = 0; k < n2;k++){
                ans.mat[i][j] += mat1.mat[i][k] * mat2.mat[k][j];
            }
            ans.mat[i][j] %= mod;
        }
    return ans;
}
void solve(){
    Matx mat1,mat2;
    mat1.mat[0][0] = 0;
    mat1.mat[0][1] = mat1.mat[1][0] = mat1.mat[1][1] = 1;
    mat2.mat[0][0] = 0;
    mat2.mat[1][0] = 1;
    while(n){
        if(n & 1){
             mat2 = mult(2,2,mat1,2,1,mat2);
        }
        mat1 = mult(2,2,mat1,2,2,mat1);
        n >>= 1;
    }
    printf("%d\n",mat2.mat[1][0]);
}
int main(){
    while(cin >> n){
        if(n == -1)
            break;
         if(n > 0){
            n --;
            solve();
         }
         else
            printf("0\n");
    }
    return 0;
}

【POJ】3070Fibonacci(矩阵快速幂)

标签:

原文地址:http://blog.csdn.net/u013451221/article/details/45723957

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!