标签:
题目链接:点击打开链接
题意:
给定二维平面的n个点坐标,问曼哈顿MST 的值。
模版题
#include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <vector> #include <string> #include <time.h> #include <math.h> #include <iomanip> #include <queue> #include <stack> #include <set> #include <map> const int inf = 1e9; const double eps = 1e-8; const double pi = acos(-1.0); template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if (x>9) pt(x / 10); putchar(x % 10 + '0'); } using namespace std; const int N = 1e5 + 10; typedef long long ll; class MST{ struct Edge{ int from, to, dis; Edge(int _from = 0, int _to = 0, int _dis = 0) :from(_from), to(_to), dis(_dis){} bool operator < (const Edge &x) const{return dis < x.dis;} }edge[N << 3]; int f[N], tot; int find(int x){ return x == f[x] ? x : f[x] = find(f[x]); } bool Union(int x, int y){ x = find(x); y = find(y); if (x == y)return false; if (x > y)swap(x, y); f[x] = y; return true; } public: void init(int n){ for (int i = 0; i <= n; i++)f[i] = i; tot = 0; } void add(int u, int v, int dis){ edge[tot++] = Edge(u, v, dis); } ll work(){//计算最小生成树,返回花费 sort(edge, edge + tot); ll cost = 0; for (int i = 0; i < tot; i++) if (Union(edge[i].from, edge[i].to)) cost += edge[i].dis; return cost; } }mst; struct Point{//二维平面的点 int x, y, id; bool operator < (const Point&a) const{ return x == a.x ? y < a.y : x < a.x; } }p[N]; class BIT{//树状数组 int c[N], id[N], maxn; int lowbit(int x){ return x&-x; } public: void init(int n){ maxn = n + 10; fill(c, c + maxn + 1, inf); fill(id, id + maxn + 1, -1); } void updata(int x, int val, int _id){ while (x){ if (val < c[x]){ c[x] = val; id[x] = _id; } x -= lowbit(x); } } int query(int x){ int val = inf, _id = -1; while (x <= maxn){ if (val > c[x]){ val = c[x]; _id = id[x]; } x += lowbit(x); } return _id; } }tree; inline bool cmp(int *x, int *y){ return *x < *y; } class Manhattan_MST{ int A[N], B[N]; public: ll work(int l, int r){ mst.init(r); for (int dir = 1; dir <= 4; dir++){ if (dir%2==0)for (int i = l; i <= r; i++)swap(p[i].x, p[i].y); else if (dir == 3)for (int i = l; i <= r; i++)p[i].y = -p[i].y; sort(p + l, p + r + 1); for (int i = l; i <= r; i++) A[i] = B[i] = p[i].y - p[i].x; //离散化 sort(B + 1, B + N + 1); int sz = unique(B + 1, B + N + 1) - B - 1; //初始化反树状数组 tree.init(sz); for (int i = r; i >= l; i--) { int pos = lower_bound(B + 1, B + sz + 1, A[i]) - B; int id = tree.query(pos); if (id != -1) mst.add(p[i].id, p[id].id, abs(p[i].x - p[id].x) + abs(p[i].y - p[id].y)); tree.updata(pos, p[i].x + p[i].y, i); } } return mst.work(); } }m_mst; int n; int main(){ int Cas = 1; while (cin >> n, n){ for (int i = 1; i <= n; i++)rd(p[i].x), rd(p[i].y), p[i].id = i; printf("Case %d: Total Weight = ", Cas++); cout << m_mst.work(1, n) << endl; } return 0; }
UVALive 3662 Another Minimum Spanning Tree 曼哈顿最小生成树
标签:
原文地址:http://blog.csdn.net/qq574857122/article/details/45725509