码迷,mamicode.com
首页 > 其他好文 > 详细

[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.17

时间:2015-05-16 09:02:20      阅读:95      评论:0      收藏:0      [点我收藏+]

标签:

设 $a_n>0$ ($n=1,2,\cdots$) 且 $\dps{\vsm{n}a_n}$ 收敛, $\dps{r_n=\sum_{k=n}^\infty a_k}$. 试证:

 

(1). $\dps{\vsm{n}\frac{a_n}{r_n}}$ 发散.

 

(2). $\dps{\vsm{n}\frac{a_n}{\sqrt{r_n}}}$ 收敛.

 

证明:

 

(1). 由 $$\bex \sum_{k=n+1}^{n+p}\frac{a_k}{r_k} \geq \frac{1}{r_{n+1}}\sum_{k=n+1}^{n+p}a_k\to 1\quad\sex{p\to\infty} \eex$$ 知 $$\bex \exists\ p,\st \sum_{k=n+1}^{n+p}\frac{a_k}{r_k}\geq \frac{1}{2}. \eex$$

 

(2). $$\beex \bea \vsm{n}\frac{a_n}{\sqrt{r_n}}&=\vsm{n}\frac{r_n-r_{n+1}}{\sqrt{r_n}} =\vsm{n}\frac{(\sqrt{r_n})^2-(\sqrt{r_{n+1}})^2}{\sqrt{r_n}}\\ &=\vsm{n}\frac{2\sqrt{\xi_n}(\sqrt{r_n}-\sqrt{r_{n+1}})}{\sqrt{r_n}}\quad\sex{r_{n+1}<\xi_n<r_n}\\ &\leq 2 \vsm{n} \sex{\sqrt{r_n}-\sqrt{r_{n+1}}}\\ &=2\sqrt{r_1}. \eea \eeex$$

[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.17

标签:

原文地址:http://www.cnblogs.com/zhangzujin/p/4507310.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!