标签:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Array Dynamic Programming
这道题属于比较简单的动态规划那一类题,若是采用递归的思想来做就时间复杂度就太复杂了,
从下往上依次递推,欲计算上一行的最小路径,先求出它下面的最小路径
#include<iostream> #include<vector> #include <algorithm> using namespace std; int minimumTotal(vector<vector<int> > &triangle) { int len_line=triangle.size(); vector<int> temp; if(triangle.empty()) return 0; if(len_line==1) return triangle[0][0]; for(int j=0;j<len_line;j++) temp.push_back(triangle[len_line-1][j]); for(int i=len_line-2;i>=0;i--) { for(int j=0;j<=i;j++) temp[j]=min(temp[j],temp[j+1])+triangle[i][j]; } return temp[0]; } int main() { vector<vector<int> > vec; vector<int> vec_line; vec_line.push_back(-1); vec.push_back(vec_line); vec_line.clear(); vec_line.push_back(2); vec_line.push_back(3); vec.push_back(vec_line); vec_line.clear(); vec_line.push_back(1); vec_line.push_back(-1); vec_line.push_back(-3); vec.push_back(vec_line); cout<<minimumTotal(vec)<<endl; }
leetcode_120题——Triangle (动态规划)
标签:
原文地址:http://www.cnblogs.com/yanliang12138/p/4513613.html