标签:
解题思路:借用过了别人写的。。
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
|f(10) | |a0 a1 a2 …a8 a9| |f(9)|
| f(9) | | 1 0 0 … 0 0| |f(8)|
| …..| = |.. … … … ..| | .. |
| f(2) | | 0 0 0 … 0 0| |f(1)|
| f(1) | | 0 0 0 … 1 0| |f(0)|
另A举证为10*10的举证,如上图。
可以推出:
(f(n),f(n-1),…,f(n-9))^(-1) = A^(n-9)*(f(9),f(8),…,f(0))^(-1)
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
#define N 10
struct Matrix{
ll mar[N][N];
}a, b, tmp;
ll n, mod;
Matrix matrixMul(Matrix aa, Matrix bb) {
for(int i = 0; i < N; i++)
for(int j = 0; j < N; j++) {
tmp.mar[i][j] = 0;
for(int k = 0; k < N; k++)
tmp.mar[i][j] += (aa.mar[i][k] * bb.mar[k][j]) % mod;
}
return tmp;
}
void solve() {
while(n) {
if(n & 1)
b = matrixMul(b,a);
a = matrixMul(a,a);
n >>= 1;
}
}
int main() {
while(scanf("%I64d%I64d", &n, &mod) != EOF) {
for(int i = 0; i < N; i++)
for(int j = 0; j < N; j++)
a.mar[i][j] = b.mar[i][j] = 0;
for(int i = 0; i < N; i++)
b.mar[i][i] = 1;
for(int i = 1; i < N; i++)
a.mar[i][i-1] = 1;
for(int i = 0; i < N; i++)
scanf("%I64d", &a.mar[0][i]);
if(n <= 9) {
printf("%I64d\n", n);
continue;
}
n -= 9;
solve();
long long ans = 0;
for(int i = 0; i < N; i++)
ans += (b.mar[0][i] * (9 - i)) % mod;
printf("%I64d\n", ans % mod);
}
return 0;
}
HDU - 1757 A Simple Math Problem 矩阵快速幂
标签:
原文地址:http://blog.csdn.net/l123012013048/article/details/45832081