标签:
链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=30726
题意 : 有向图G,求一个最大的点集,使得点集中任意两个节点u和v,满足 要么u可以到达v,要么v可以到达u,或者u和v可以相互到达。
可以强连通缩点成一张DAG,以为每个强连通分量要么选要么不选。求DAG上的最长路 二次建图 用了2种不同的方法,也分别用了记忆花搜索DP和直接递推DP
vector建图和记忆化搜索:
#include <algorithm> #include <iostream> #include <cstring> #include <cstdio> #include <vector> #include <stack> #include <cmath> #include <map> #define lson o<<1,l,m #define rson o<<1|1,m+1,r #define mem(a) memset(a,0,sizeof(a)) typedef long long ll; const int N = 1005; const int M = 50005; const ll mod = 1000000007; using namespace std; int n, m, T; int he[N]; struct C { int ne, to; } e[M]; void add(int id, int x, int y) { e[id].to = y; e[id].ne = he[x]; he[x] = id; } int pre[N], low[N], scc[N], dfs_clock, scc_cnt; stack <int> S; void dfs(int u) { pre[u] = low[u] = ++ dfs_clock; S.push(u); for(int i = he[u]; i != -1; i = e[i].ne) { int v = e[i].to; if(pre[v] == 0) { dfs(v); low[u] = min(low[u], low[v]); } else if(scc[v] == 0) { low[u] = min(low[u], pre[v]); } } if(low[u] == pre[u]) { scc_cnt ++; while(1) { int x = S.top(); S.pop(); scc[x] = scc_cnt; if(x == u) break; } } } void find_scc() { mem(scc); mem(pre); dfs_clock = scc_cnt = 0; for(int i = 1; i <= n; i++) { if(pre[i] == 0) dfs(i); } } int dp[N], vis[N], w[N]; vector <int> G[N]; int DP(int u) { int& ans = dp[u]; if(vis[u] == 1) return ans; vis[u] = 1; ans = w[u]; for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; ans = max(ans, DP(v) + w[u]); } return ans; } int main() { cin >> T; while(T--) { cin >> n >> m; memset(he, -1, sizeof(he)); for(int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y); add(i, x, y); } find_scc(); mem(w); for(int i = 1; i <= n; i++) { int x = scc[i]; w[x]++; } for(int i = 1; i <= scc_cnt; i++) { G[i].clear(); } int id = 1; for(int u = 1; u <= n; u++) { for(int i = he[u]; i != -1; i = e[i].ne) { int v = e[i].to; if(scc[v] != scc[u]) { G[scc[u]].push_back(scc[v]); } } } memset(vis, 0, sizeof(vis)); int ans = 0; for(int i = 1; i <= scc_cnt; i++) { ans = max(ans, DP(i)); } printf("%d\n", ans); } return 0; }
下面是 数组邻接表建图 递推DP(类似最长上升子序列)
#include <algorithm> #include <iostream> #include <cstring> #include <cstdio> #include <vector> #include <stack> #include <cmath> #include <map> #define lson o<<1,l,m #define rson o<<1|1,m+1,r #define mem(a) memset(a,0,sizeof(a)) typedef long long ll; const int N = 1005; const int M = 50005; const ll mod = 1000000007; using namespace std; int n, m, T; int he[N]; struct C { int ne, to; } e[M]; void add(int id, int x, int y) { e[id].to = y; e[id].ne = he[x]; he[x] = id; } int pre[N], low[N], scc[N], dfs_clock, scc_cnt; stack <int> S; void dfs(int u) { pre[u] = low[u] = ++ dfs_clock; S.push(u); for(int i = he[u]; i != -1; i = e[i].ne) { int v = e[i].to; if(pre[v] == 0) { dfs(v); low[u] = min(low[u], low[v]); } else if(scc[v] == 0) { low[u] = min(low[u], pre[v]); } } if(low[u] == pre[u]) { scc_cnt ++; while(1) { int x = S.top(); S.pop(); scc[x] = scc_cnt; if(x == u) break; } } } void find_scc() { mem(scc); mem(pre); dfs_clock = scc_cnt = 0; for(int i = 1; i <= n; i++) { if(pre[i] == 0) dfs(i); } } int w[N], he1[N]; struct C1 { int ne, to; } e1[N]; void add1(int id, int x, int y) { e1[id].to = y; e1[id].ne = he1[x]; he1[x] = id; } int dp[N], vis[N]; int DP(int u) { int& ans = dp[u]; if(vis[u] == 1) return ans; vis[u] = 1; ans = w[u]; for(int i = he1[u]; i != -1; i = e1[i].ne) { int v = e1[i].to; ans = max(ans, DP(v) + w[v]); } return ans; } int main() { cin >> T; while(T--) { cin >> n >> m; memset(he, -1, sizeof(he)); for(int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y); add(i, x, y); } find_scc(); mem(w); for(int i = 1; i <= n; i++) { int x = scc[i]; w[x]++; } map < pair<int, int>, int > mp; int id = 1; memset(he1, -1, sizeof(he1)); for(int u = 1; u <= n; u++) { for(int i = he[u]; i != -1; i = e[i].ne) { int v = e[i].to; if(scc[v] != scc[u]) { if(mp[ make_pair(scc[u], scc[v]) ] == 0) { mp[ make_pair(scc[u], scc[v]) ] = 1; add1(id, scc[u], scc[v]); id++; } } } } memset(vis, 0, sizeof(vis)); int ans = 0; for(int i = 1; i <= scc_cnt; i++) { dp[i] = w[i]; for(int j = 1; j < i; j++) { int u; for(u = he1[i]; u != -1; u = e1[u].ne) { if(e1[u].to == j) { break; } } if(u == -1) continue; dp[i] = max(dp[i], dp[j] + w[i]); } ans = max(ans, dp[i]); } printf("%d\n", ans); } return 0; }
UVA 11324 The Largest Clique (强连通缩点 + DAG最长路)
标签:
原文地址:http://blog.csdn.net/u013923947/article/details/45845735