码迷,mamicode.com
首页 > 其他好文 > 详细

用户收视习惯聚类分析

时间:2015-05-19 16:53:09      阅读:186      评论:0      收藏:0      [点我收藏+]

标签:用户数   南京   where   样本   特色   

数据挖掘测试实例

用户收视习惯聚类分析

 

    用户收视习惯在不同的小时段,不同的星期,会呈现不一样的特色,我们现在要做的就是将用户IPTV数据按照每小时收视时长进行聚类分析

测试样本:

201366日(星期四,非假日)南京地区当天观看过IPTV的用户

用户数:269745 

数据准备:

1.创建临时表

select s_userid,s_hour,s_timeleninto tmp_user_hour_len from tst_fct_d20130606_4 where s_city_id=1

 

2、生成目标表

select s_userid,

(case  when s_hour=‘00‘ then s_timelen else 0 end)as hour00 ,

(case  when s_hour=‘01‘ then s_timelen else 0 end)as hour01 ,

(case  when s_hour=‘02‘ then s_timelen else 0 end)as hour02 ,

(case  when s_hour=‘03‘ then s_timelen else 0 end)as hour03 ,

(case  when s_hour=‘04‘ then s_timelen else 0 end)as hour04 ,

(case  when s_hour=‘05‘ then s_timelen else 0 end)as hour05 ,

(case  when s_hour=‘06‘ then s_timelen else 0 end)as hour06 ,

(case  when s_hour=‘07‘ then s_timelen else 0 end)as hour07 ,

(case  when s_hour=‘08‘ then s_timelen else 0 end)as hour08 ,

(case  when s_hour=‘09‘ then s_timelen else 0 end)as hour09 ,

(case  when s_hour=‘10‘ then s_timelen else 0 end)as hour10 ,

(case  when s_hour=‘11‘ then s_timelen else 0 end) ashour11 ,

(case  when s_hour=‘12‘ then s_timelen else 0 end)as hour12 ,

(case  when s_hour=‘13‘ then s_timelen else 0 end)as hour13 ,

(case  when s_hour=‘14‘ then s_timelen else 0 end)as hour14 ,

(case  when s_hour=‘15‘ then s_timelen else 0 end)as hour15 ,

(case  when s_hour=‘16‘ then s_timelen else 0 end)as hour16 ,

(case  when s_hour=‘17‘ then s_timelen else 0 end)as hour17 ,

(case  when s_hour=‘18‘ then s_timelen else 0 end)as hour18 ,

(case  when s_hour=‘19‘ then s_timelen else 0 end)as hour19 ,

(case  when s_hour=‘20‘ then s_timelen else 0 end)as hour20 ,

(case  when s_hour=‘21‘ then s_timelen else 0 end)as hour21 ,

(case  when s_hour=‘22‘ then s_timelen else 0 end)as hour22 ,

(case  when s_hour=‘23‘ then s_timelen else 0 end)as hour23  into user_hour_len_nj_20130606

from tmp_user_hour_len

 

3、在211服务器上导出文件到本地

bcp user_hour_len_nj_20130606 outuser_hour_len_nj_20130606.txt -UXXX -PXXX -SXXX -c -t ‘|‘ -r ‘\n‘

 

4、提取前200个实例进行测试

分析方法:

采用k均值算法进行聚类分析

 

数据源格式:

属性集:

属性集包含24个时段的详细信息,格式如下(这里real也可以为numeric)

 

@relation cluster

@attribute H00 real

@attribute H01 real

@attribute H02 real

@attribute H03 real

@attribute H04 real

@attribute H05 real

@attribute H06 real

@attribute H07 real

@attribute H08 real

@attribute H09 real

@attribute H10 real

@attribute H11 real

@attribute H12 real

@attribute H13 real

@attribute H14 real

@attribute H15 real

@attribute H16 real

@attribute H17 real

@attribute H18 real

@attribute H19 real

@attribute H20 real

@attribute H21 real

@attribute H22 real

@attribute H23 real

数据集:

数据集包含每个用户的订购信息,格式如下:

@data

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,12,0

0,0,0,0,0,0,0,0,0,0,0,0,26,59,16,0,0,0,50,55,56,58,59,10

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,59,59,18,0

57,35,0,0,0,0,20,0,0,0,0,0,0,0,15,59,59,59,59,59,59,58,54,35

.....

测试过程:

打开weka exploreropen file打开特征文件(example_cluster_ID_H24_200.arff),然后选择cluster,选择算法SimpleKmeans,选择距离方法Euclidean distance (orsimilarity) function.迭代次数maxIterations=500,类数目numcluster=5(或3,4都可以),seed=10,start

numcluster=5时,得出如下结果

1

技术分享

这里代表所聚的各个类中的样本条数、数量占整个样本集的百分比。

 


2

技术分享

 

Number of iterations: 7

Within cluster sum of squared errors:228.6644541918032

Within cluster sum of squared errors,代表簇内距离,这个值越小,聚类效果越好(当然聚类数越多这个值越小)。在不改变聚类数量的前提下,调整seed值可以改变上面squared errors值的大小,使得簇内距离越小,聚类效果越好。

 

 

参数说明:

参数选择窗口如下:

技术分享

 

 

参数说明:

displayStdDevs是否显示数字属性标准差和名词属性个数
distanceFunction
用于比较实例的距离函数,包括马氏距离、欧氏距      离、明氏距离等(默认:weka.core.EuclideanDistance)。
dontReplaceMissingValues
是否不使用mean/mode替换全部丢失的值。
maxIterations
最大迭代次数
numClusters
所聚的类数
preserveInstancesOrder
是否预先排列实例的顺序
seed
设定的随机种子值

 

 

QuestionS

      1、如何找出哪个ID聚到了哪一类中;

      A针对训练样本,在聚类结果右击点击“Visualizecluster assignments”,在弹出的窗口中点击save,则可保存一个arff文件,在这个文件中每个样本最后一个属性值即(“@attributeCluster”)给出了详细划入的簇类别;

      另外,第一个数值为训练样本的标号。

 

以文件的部分数据为例(save_file_ID2Class.arff),如下:

----------------------------------------------------------------------------------------------------------------

              @attributeH22 numeric

              @attributeH23 numeric

              @attributeCluster {cluster0,cluster1,cluster2,cluster3}

 

              @data

              0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,12,0,cluster1

              1,0,0,0,0,0,0,0,0,0,0,0,0,26,59,16,0,0,0,50,55,56,58,59,10,cluster2

              2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,59,59,18,0,cluster2

              3,57,35,0,0,0,0,20,0,0,0,0,0,0,0,15,59,59,59,59,59,59,58,54,35,cluster3

----------------------------------------------------------------------------------------------------------------

 

 

本文出自 “用户流失统计” 博客,谢绝转载!

用户收视习惯聚类分析

标签:用户数   南京   where   样本   特色   

原文地址:http://9309062.blog.51cto.com/9299062/1652804

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!