标签:topological sort graph bfs leetcode
【题目】
There are a total of n courses you have to take, labeled from 0
to n
- 1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
【解析】典型的拓扑排序。原理也很简单,在一个有向图中,每次找到一个没有前驱节点的节点(也就是入度为0的节点),然后把它指向其他节点的边都去掉,重复这个过程(BFS),直到所有节点已被找到,或者没有符合条件的节点(如果图中有环存在)。
回顾一下图的三种表示方式:边表示法(即题目中表示方法),邻接表法,邻接矩阵。用邻接表存储图比较方便寻找入度为0的节点。
【Java代码】
public class Solution { public boolean canFinish(int numCourses, int[][] prerequisites) { // init the adjacency list List<Set> posts = new ArrayList<Set>(); for (int i = 0; i < numCourses; i++) { posts.add(new HashSet<Integer>()); } // fill the adjacency list for (int i = 0; i < prerequisites.length; i++) { posts.get(prerequisites[i][1]).add(prerequisites[i][0]); } // count the pre-courses int[] preNums = new int[numCourses]; for (int i = 0; i < numCourses; i++) { Set set = posts.get(i); Iterator<Integer> it = set.iterator(); while (it.hasNext()) { preNums[it.next()]++; } } // remove a non-pre course each time for (int i = 0; i < numCourses; i++) { // find a non-pre course int j = 0; for ( ; j < numCourses; j++) { if (preNums[j] == 0) break; } // if not find a non-pre course if (j == numCourses) return false; preNums[j] = -1; // decrease courses that post the course Set set = posts.get(j); Iterator<Integer> it = set.iterator(); while (it.hasNext()) { preNums[it.next()]--; } } return true; } }
注意,输入可能有重复的边,所以邻接表用HashSet存储。
下面一种代码是不用HashSet的,对于重复的边,它在邻接表中村了两份,同时计算入度时也算了两次,所以代码不会有问题。但个人感觉最好用HashSet,这样符合图的定义。
下面的代码还是比较典型的BFS写法,大家可以对比理解下:
public class Solution { public boolean canFinish(int numCourses, int[][] prerequisites) { List<List<Integer>> posts = new ArrayList<List<Integer>>(); for (int i = 0; i < numCourses; i++) { posts.add(new ArrayList<Integer>()); } int[] preNums = new int[numCourses]; for (int i = 0; i < prerequisites.length; i++) { posts.get(prerequisites[i][1]).add(prerequisites[i][0]); preNums[prerequisites[i][0]]++; } Queue<Integer> queue = new LinkedList<Integer>(); for (int i = 0; i < numCourses; i++) { if (preNums[i] == 0){ queue.offer(i); } } int count = numCourses; while (!queue.isEmpty()) { int cur = queue.poll(); for (int i : posts.get(cur)) { if (--preNums[i] == 0) { queue.offer(i); } } count--; } return count == 0; } }
【LeetCode】Course Schedule 解题报告
标签:topological sort graph bfs leetcode
原文地址:http://blog.csdn.net/ljiabin/article/details/45846837