标签:style class blog code color 2014
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
思路:思路同Unique Path,只不过需要加入些许限制,注意,如果第一行和第一列的某一个值为0, 则该行以及该列后面的值都会为0
代码一:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size();
if(m == 0) return 0;
int n = obstacleGrid[0].size();
if(n == 0) return 0;
int c[m][n];
c[0][0] = obstacleGrid[0][0] ? 0 : 1;
for(int i = 1; i < n; i++)
c[0][i] = obstacleGrid[0][i] ? 0 : c[0][i - 1];
for(int i = 1; i < m; i++)
c[i][0] = obstacleGrid[i][0] ? 0 : c[i - 1][0];
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++)
{
if(obstacleGrid[i][j] == 1)
{
c[i][j] = 0;
continue;
}
c[i][j] = c[i][j - 1] + c[i - 1][j];
}
return c[m - 1][n - 1];
}
};
// 动规,滚动数组
// 时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
const int m = obstacleGrid.size();
const int n = obstacleGrid[0].size();
if (obstacleGrid[0][0] || obstacleGrid[m-1][n-1]) return 0;
vector<int> f(n, 0);
f[0] = obstacleGrid[0][0] ? 0 : 1;
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
f[j] = obstacleGrid[i][j] ? 0 : (j == 0 ? 0 : f[j - 1]) + f[j];
return f[n - 1];
}
};【Leetcode】Unique Paths II,布布扣,bubuko.com
标签:style class blog code color 2014
原文地址:http://blog.csdn.net/lipantechblog/article/details/30480625