标签:计算几何
整理了一下计算几何的模板
后续会继续更新。。。。。
const double eps = 1e-8; const double PI = acos(-1.0); int sgn(double x){ if(fabs(x) < eps)return 0; if(x < 0)return -1; else return 1; } //结构体定义 struct Point { double x,y; Point(){} Point(double xx,double yy){x=xx;y=yy;} Point operator-(Point b){return Point(x-b.x,y-b.y);} Point operator+(Point b){return Point(x+b.x,y+b.y);} double operator^(Point b){return x*b.y-y*b.x;} double operator*(Point b){return x*b.x-y*b.y;} //绕原点逆时针转B度 void transXY(double B){ double tx = x,ty = y; x = tx*cos(B) - ty*sin(B); y = tx*sin(B) + ty*cos(B); } }p[maxn]; struct Line { Point s,e; Line(){} Line(Point ss,Point ee){s=ss;e=ee;} //两直线求交点 pair<int,Point> operator &(const Line &b)const{ Point res = s; if(sgn((s-e)^(b.s-b.e)) == 0){ if(sgn((s-b.e)^(b.s-b.e)) == 0) return make_pair(0,res);//重合 else return make_pair(1,res);//平行 } double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e)); res.x += (e.x-s.x)*t; res.y += (e.y-s.y)*t; return make_pair(2,res); } }; double dist(Point a,Point b){ return sqrt((a-b)*(a-b)); } bool inter(Line l1,Line l2){ return max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) && max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) && max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) && max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) && sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0 && sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= 0; } //判断直线和线段相交 bool Seg_inter_line(Line l1,Line l2) {//判断直线l1和线段l2是否相交 return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0; } //点到直线距离 //返回为result,是点到直线最近的点 Point PointToLine(Point P,Line L){ Point result; double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s)); result.x = L.s.x + (L.e.x-L.s.x)*t; result.y = L.s.y + (L.e.y-L.s.y)*t; return result; } //点到线段的距离 //返回点到线段最近的点 Point NearestPointToLineSeg(Point P,Line L){ Point result; double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s)); if(t >= 0 && t <= 1){ result.x = L.s.x + (L.e.x - L.s.x)*t; result.y = L.s.y + (L.e.y - L.s.y)*t; } else{ if(dist(P,L.s) < dist(P,L.e)) result = L.s; else result = L.e; } return result; } //计算多边形面积 //点的编号从0~n-1 double CalcArea(Point p[],int n){ double res = 0; for(int i = 0;i < n;i++) res += (p[i]^p[(i+1)%n])/2; return fabs(res); } //*判断点在线段上 bool OnSeg(Point P,Line L){ return sgn((L.s-P)^(L.e-P)) == 0 && sgn((P.x - L.s.x) * (P.x - L.e.x)) <= 0 && sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0; } //*判断点在凸多边形内 //点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0) //点的编号:0~n-1 //返回值: //-1:点在凸多边形外 //0:点在凸多边形边界上 //1:点在凸多边形内 int inConvexPoly(Point a,Point p[],int n){ for(int i = 0;i < n;i++){ if(sgn((p[i]-a)^(p[(i+1)%n]-a)) < 0)return -1; else if(OnSeg(a,Line(p[i],p[(i+1)%n])))return 0; } return 1; } //*判断点在任意多边形内 //射线法,poly[]的顶点数要大于等于3,点的编号0~n-1 //返回值 //-1:点在凸多边形外 //0:点在凸多边形边界上 //1:点在凸多边形内 int inPoly(Point p,Point poly[],int n){ int cnt; Line ray,side; cnt = 0; ray.s = p; ray.e.y = p.y; ray.e.x = -100000000000.0;//-INF,注意取值防止越界 for(int i = 0;i < n;i++){ side.s = poly[i]; side.e = poly[(i+1)%n]; if(OnSeg(p,side))return 0; //如果平行轴则不考虑 if(sgn(side.s.y - side.e.y) == 0) continue; if(OnSeg(side.s,ray)) { if(sgn(side.s.y - side.e.y) > 0)cnt++; } else if(OnSeg(side.e,ray)) { if(sgn(side.e.y - side.s.y) > 0)cnt++; } else if(inter(ray,side)) cnt++; } if(cnt % 2 == 1) return 1; else return -1; } //判断凸多边形 //允许共线边 //点可以是顺时针给出也可以是逆时针给出 //点的编号1~n-1 bool isconvex(Point poly[],int n){ bool s[3]; memset(s,false,sizeof(s)); for(int i = 0;i < n;i++) { s[sgn( (poly[(i+1)%n]-poly[i])^(poly[(i+2)%n]-poly[i]) )+1] = true; if(s[0] && s[2])return false; } return true; } /* * 求凸包,Graham算法 * 点的编号0~n-1 * 返回凸包结果ch[0~top-1]为凸包的编号 * poj2007 凸包点排序逆时针输出 */ #include <stdio.h> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define sqr(a) ((a) * (a)) #define dis(a, b) sqrt(sqr(a.x - b.x) + sqr(a.y - b.y)) const int MAXN = 110; const double PI = acos(-1.0); struct Point { int x; int y; Point(double a = 0, double b = 0) : x(a), y(b) {} friend bool operator < (const Point &l, const Point &r) { return l.y < r.y || (l.y == r.y && l.x < r.x); } } p[MAXN], ch[MAXN]; double mult(Point a, Point b, Point o) { return (a.x - o.x) * (b.y - o.y) >= (b.x - o.x) * (a.y - o.y); } int Graham(Point p[], int n, Point res[]) { int top = 1; sort(p, p + n); if (n == 0) return 0; res[0] = p[0]; if (n == 1) return 0; res[1] = p[1]; if (n == 2) return 0; res[2] = p[2]; int i; for (i = 2; i < n; i++) { while (top && (mult(p[i], res[top], res[top - 1]))) top--; res[++top] = p[i]; } int len = top; res[++top] = p[n - 2]; for (i = n - 3; i >= 0; i--) { while (top != len && (mult(p[i], res[top], res[top - 1]))) top--; res[++top] = p[i]; } return top; } int n; int main() { while (scanf("%d%d", &p[n].x, &p[n].y) != EOF) n++; n = Graham(p, n, ch); int t,i; for (i = 0; i < n; i++) if (ch[i].x == 0 && ch[i].y == 0) { t = i; break; } for (i = t; i < n; i++) printf("(%d,%d)\n", ch[i].x, ch[i].y); for (i = 0; i < t; i++) printf("(%d,%d)\n", ch[i].x, ch[i].y); return 0; } /* 平面最近点对 ZOJ 2107 */ #include<stdio.h> #include<math.h> #include<algorithm> using namespace std; const double eps=1e-8; struct Point { double x,y; }p[100005],tmp[100005]; int n; double dist(Point a,Point b){ return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } int cmpxy(Point a,Point b){ if(a.x!=b.x) return a.x<b.x; return a.y<b.y; } int cmpy(Point a,Point b){ return a.y<b.y; } double Closest_Pair(int left,int right){ double d=1e20; if(left==right) return d; if(left+1==right) return dist(p[left],p[right]); int mid=(left+right)>>1; double d1=Closest_Pair(left,mid); double d2=Closest_Pair(mid+1,right); d=min(d1,d2); int k=0; for(int i=left;i<=right;i++){ if(fabs(p[mid].x-p[i].x)<d+eps) tmp[k++]=p[i]; } sort(tmp,tmp+k,cmpy); for(int i=0;i<k;i++){ for(int j=i+1;j<k&&tmp[j].y-tmp[i].y<d+eps;j++){ d=min(d,dist(tmp[i],tmp[j])); } } return d; } int main(){ int n; while(scanf("%d",&n),n){ for(int i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); sort(p,p+n,cmpxy); printf("%.2lf\n",Closest_Pair(0,n-1)/2); } } /* 旋转卡壳 求平面最远点对 Beauty Contest POJ 2187 */ #include <iostream> #include <cstdlib> #include <cstdio> #include <cmath> #include<algorithm> #define N 50005 using namespace std; const double eps=1e-5; struct Point { int x,y; Point (){} Point (int xx,int yy) {x=xx;y=yy;} Point operator -(const Point b)const {return Point(x-b.x,y-b.y);} int operator ^(const Point b)const {return x*b.y-y*b.x;} }; int n,top; Point p[N],stack[N]; int dist(Point a,Point b){ return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } int cmp(Point a,Point b) {//逆时针 int tmp=(a-p[0])^(b-p[0]); if(tmp == 0 ) return dist(a,p[0]) - dist(b,p[0]) <= 0; else return tmp>0; } void Graham(){ int k=0; for(int i=0;i<n;i++){ if(p[i].y<p[k].y || (p[i].y==p[k].y && p[i].x<p[k].x)) k=i; } swap(p[0],p[k]); sort(p+1,p+n,cmp); if(n<=2){ for(int i=0;i<n;i++) stack[i]=p[i]; top=n; return; } stack[0]=p[0]; stack[1]=p[1]; top=2; for(int i=2;i<n;i++){ while(top>=2 && ((stack[top-1]-stack[top-2])^(p[i]-stack[top-2]))<=0) top--; stack[top++]=p[i]; } } int main(){ while(scanf("%d",&n)!=EOF){ for(int i=0;i<n;i++) scanf("%d%d",&p[i].x,&p[i].y); Graham(); for(int i=0;i<top;i++) { p[i]=stack[i]; } p[top]=p[0]; int ans=0; Point a,b; for(int i=0,j=1;i<top;i++){ while(((p[i+1]-p[i])^(p[j]-p[i]))<((p[i+1]-p[i])^(p[j+1]-p[i]))) j=(j+1)%top; if(dist(p[i],p[j])>=ans) ans=dist(p[i],p[j]); if(dist(p[i+1],p[j+1])>=ans) ans=dist(p[i+1],p[j+1]);//处理两条边平行的特殊情况 } printf("%d\n",ans); } return 0; } //旋转卡壳计算平面点集最大三角形面积 int rotating_calipers(Point p[],int n){ int ans = 0; Point v; for(int i = 0;i < n;i++){ int j = (i+1)%n; int k = (j+1)%n; while(j != i && k != i){ ans = max(ans,abs((p[j]-p[i])^(p[k]-p[i]))); while( ((p[i]-p[j])^(p[(k+1)%n]-p[k])) < 0 ) k = (k+1)%n; j = (j+1)%n; } } return ans; } Point p[MAXN]; int main(){ int n; while(scanf("%d",&n) == 1){ if(n == -1)break; for(int i = 0;i < n;i++)list[i].input(); Graham(n); for(int i = 0;i < top;i++)p[i] = list[Stack[i]]; printf("%.2f\n",(double)rotating_calipers(p,top)/2); } return 0; } /* 最近点对和最远点对产生在有向平行切线上,将一条边平行过去,然后判断 求两凸包最近点对,最远点对类似 */ #include <iostream> #include <cstdlib> #include <cstdio> #include <cmath> #include<algorithm> using namespace std; const double eps=1e-8; struct Point { double x,y; Point (){} Point (double xx,double yy) {x=xx;y=yy;} Point operator -(const Point b)const {return Point(x-b.x,y-b.y);} double operator ^(const Point b)const {return x*b.y-y*b.x;} double operator *(const Point &b)const{ return x*b.x + y*b.y; } }; struct Line { Point s,e; double angle; Line(){} Line(Point ss,Point ee) {s=ss;e=ee;} }; Point p[10005],q[10005],list[10005]; int n,m,top,miny,maxy; double dist(Point a,Point b) { return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)); } //求点到线段距离,不是点到直线距离 double pointtoseg(Point P,Point b,Point c){ Point result; Line L=Line(b,c); double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s)); if(t >=0 && t <= 1) { result.x = L.s.x + (L.e.x - L.s.x)*t; result.y = L.s.y + (L.e.y - L.s.y)*t; } else { if(dist(P,L.s) < dist(P,L.e)) result = L.s; else result = L.e; } return dist(result,P); } double segtoseg(Point a,Point b,Point c,Point d){ double ans1=min(pointtoseg(a,c,d),pointtoseg(b,c,d)); double ans2=min(pointtoseg(c,a,b),pointtoseg(d,a,b)); return min(ans1,ans2); } int cmp(Point a,Point b) {//逆时针 double tmp=(a-list[0])^(b-list[0]); if(tmp == 0) return dist(a,list[0]) - dist(b,list[0]) <-eps; else return tmp>0; } void Graham(Point* p,Point* stack,int n){ int k=0; for(int i=0;i<n;i++){ if(p[i].y<p[k].y || (p[i].y==p[k].y && p[i].x<p[k].x)) k=i; } swap(p[0],p[k]); sort(p+1,p+n,cmp); if(n<=2){ for(int i=0;i<n;i++) stack[i]=p[i]; top=n; return; } stack[0]=p[0]; stack[1]=p[1]; top=2; for(int i=2;i<n;i++){ while(top>=2 && ((stack[top-1]-stack[top-2])^(p[i]-stack[top-2]))<eps) top--; stack[top++]=p[i]; } } double Get_angle(Point a1,Point a2,Point b1,Point b2) { return (a2-a1)^(b1-b2); } double rotating(Point* p,int n,Point* q,int m){ miny=0,maxy=0; for(int i=0;i<n;i++) { if(p[i].y<p[miny].y) miny=i; } for(int i=0;i<m;i++) { if(q[i].y>q[maxy].y) maxy=i; } double ans=dist(p[miny],q[maxy]); for(int i=0;i<n;i++){ double tmp; while((tmp=Get_angle(p[miny],p[miny+1],q[maxy],q[maxy+1]))<-eps) maxy=(maxy+1)%m; if(fabs(tmp)<eps) ans=min(ans,segtoseg(p[miny],p[(miny+1)%n],q[maxy],q[(maxy+1)%m])); else ans=min(ans,pointtoseg(q[maxy],p[miny],p[(miny+1)%n])); miny=(miny+1)%n; } return ans; } int main() { while(scanf("%d%d",&n,&m)) { if(n==0 && m==0) break; //顺时针排列的点 miny=0,maxy=0; for(int i=0;i<n;i++) { scanf("%lf%lf",&list[i].x,&list[i].y); } Graham(list,p,n); n=top; for(int i=0;i<m;i++) { scanf("%lf%lf",&list[i].x,&list[i].y); } Graham(list,q,m); m=top; p[n]=p[0]; q[m]=q[0]; printf("%.5f\n",min(rotating(p,n,q,m),rotating(q,m,p,n))); } return 0; } /*半平面相交(直线切割多边形)(点标号从1开始) n^2算法 */ Point points[MAXN],p[MAXN],q[MAXN]; int n; double r; int cCnt,curCnt; inline void getline(Point x,Point y,double &a,double &b,double &c){ a = y.y - x.y; b = x.x - y.x; c = y.x * x.y - x.x * y.y; } inline void initial(){ for(int i = 1; i <= n; ++i)p[i] = points[i]; p[n+1] = p[1]; p[0] = p[n]; cCnt = n; } inline Point intersect(Point x,Point y,double a,double b,double c){ double u = fabs(a * x.x + b * x.y + c); double v = fabs(a * y.x + b * y.y + c); return Point( (x.x * v + y.x * u) / (u + v) , (x.y * v + y.y * u) / (u + v) ); } inline void cut(double a,double b ,double c){ curCnt = 0; for(int i = 1; i <= cCnt; ++i){ if(a*p[i].x + b*p[i].y + c >= EPS)q[++curCnt] = p[i]; else { if(a*p[i-1].x + b*p[i-1].y + c > EPS){ q[++curCnt] = intersect(p[i],p[i-1],a,b,c); } if(a*p[i+1].x + b*p[i+1].y + c > EPS){ q[++curCnt] = intersect(p[i],p[i+1],a,b,c); } } } for(int i = 1; i <= curCnt; ++i)p[i] = q[i]; p[curCnt+1] = q[1];p[0] = p[curCnt]; cCnt = curCnt; } inline void solve(){ //注意:默认点是顺时针,如果题目不是顺时针,规整化方向 initial(); for(int i = 1; i <= n; ++i){ double a,b,c; getline(points[i],points[i+1],a,b,c); cut(a,b,c); } /* 如果要向内推进r,用该部分代替上个函数 for(int i = 1; i <= n; ++i){ Point ta, tb, tt; tt.x = points[i+1].y - points[i].y; tt.y = points[i].x - points[i+1].x; double k = r / sqrt(tt.x * tt.x + tt.y * tt.y); tt.x = tt.x * k; tt.y = tt.y * k; ta.x = points[i].x + tt.x; ta.y = points[i].y + tt.y; tb.x = points[i+1].x + tt.x; tb.y = points[i+1].y + tt.y; double a,b,c; getline(ta,tb,a,b,c); cut(a,b,c); } */ //多边形核的面积 double area = 0; for(int i = 1; i <= curCnt; ++i) area += p[i].x * p[i + 1].y - p[i + 1].x * p[i].y; area = fabs(area / 2.0); //此时cCnt为最终切割得到的多边形的顶点数,p为存放顶点的数组 } inline void GuiZhengHua(){ //规整化方向,逆时针变顺时针,顺时针变逆时针 for(int i = 1; i < (n+1)/2; i ++) swap(points[i], points[n-i]);//头文件加iostream } inline void init(){ for(int i = 1; i <= n; ++i)points[i].input(); points[n+1] = points[1]; } /* 半平面交nlogn算法 */ #include<stdio.h> #include<math.h> #include<algorithm> #define zero(a) fabs(a)<eps using namespace std; const double eps=1e-10; struct Point { double x,y; Point () {}; Point (double xx,double yy) {x=xx;y=yy;}; double operator^(const Point b)const{ return x*b.y-y*b.x; } Point operator-(const Point b)const{ return Point(x-b.x,y-b.y); } }; struct Line { Point s,e; double angle; Line(){}; Line(Point ss,Point ee){s=ss;e=ee;} Point operator &(const Line b)const { Point res=s; double t=((s-b.e)^(b.s-b.e))/((s-e)^(b.s-b.e)); res.x+=(e.x-s.x)*t; res.y+=(e.y-s.y)*t; return res; } void puts(){ printf("%.2f %.2f %.2f %.2f %f\n",s.x,s.y,e.x,e.y,angle); } }; int n; Line dq[20005],l[20005]; Point p[20005]; int cmp(Line a,Line b){ if (fabs(a.angle-b.angle)<eps) return ((a.e-a.s)^(b.s-a.s))<-eps; else return a.angle>b.angle; } double xmul(Point p0,Point p1,Point p2){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } void HPI(){ sort(l,l+n,cmp); int ln=0; for(int i=1,j=0;i<n;i++) { if (!zero(l[i].angle-l[j].angle)) l[++j]=l[i]; ln=j+1; } n=ln; int bot=0,top=1; dq[0]=l[0]; dq[1]=l[1]; for(int i=2;i<n;i++){ while(bot<top&&xmul(l[i].s,l[i].e,(dq[top]&dq[top-1]))<-eps) top--; while(bot<top&&xmul(l[i].s,l[i].e, (dq[bot]&dq[bot+1]))<-eps) bot++; dq[++top]=l[i]; } while(bot<top&&xmul(dq[bot].s,dq[bot].e, (dq[top]&dq[top-1]))<-eps) top--; while(bot<top&&xmul(dq[top].s,dq[top].e, (dq[bot]&dq[bot+1]))<-eps) bot++; dq[top+1]=dq[bot]; int cnt=0; for(int i=bot;i<=top;i++) p[cnt++]=dq[i]&dq[i+1]; p[cnt]=p[0]; if (top<=bot+1) cnt=0; double s=0; for(int i=0;i<cnt;i++) s+=p[i]^p[i+1]; s=fabs(s*0.5); printf("%.1f\n",s); } int main() { while(scanf("%d",&n)!=EOF) { l[0]=Line(Point(0,0),Point(10000,0)); l[n].angle=atan2(l[n].e.y-l[n].s.y,l[n].e.x-l[n].s.x); l[0+1]=Line(Point(10000,0),Point(10000,10000)); l[0+1].angle=atan2(l[0+1].e.y-l[0+1].s.y,l[0+1].e.x-l[0+1].s.x); l[0+2]=Line(Point(10000,10000),Point(0,10000)); l[0+2].angle=atan2(l[0+2].e.y-l[0+2].s.y,l[0+2].e.x-l[0+2].s.x); l[0+3]=Line(Point(0,10000),Point(0,0)); l[0+3].angle=atan2(l[0+3].e.y-l[0+3].s.y,l[0+3].e.x-l[0+3].s.x); for(int i=0;i<n;i++) { scanf("%lf%lf%lf%lf",&l[i+4].s.x,&l[i+4].s.y,&l[i+4].e.x,&l[i+4].e.y); l[i+4].angle=atan2(l[i+4].e.y-l[i+4].s.y,l[i+4].e.x-l[i+4].s.x); } n=n+4; HPI(); } } //过三点求圆心坐标 Point waixin(Point a,Point b,Point c){ double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1)/2; double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2)/2; double d = a1*b2 - a2*b1; return Point(a.x + (c1*b2 - c2*b1)/d, a.y + (a1*c2 -a2*c1)/d); } //两个圆的公共部分面积 double Area_of_overlap(Point c1,double r1,Point c2,double r2){ double d = dist(c1,c2); if(r1 + r2 < d + eps)return 0; if(d < fabs(r1 - r2) + eps){ double r = min(r1,r2); return PI*r*r; } double x = (d*d + r1*r1 - r2*r2)/(2*d); double t1 = acos(x / r1); double t2 = acos((d - x)/r2); return r1*r1*t1 + r2*r2*t2 - d*r1*sin(t1); } /* Pick公式 顶点坐标均是整点的简单多边形:面积=内部格点数目+边上格点数目/2-1 */ /* 圆的并 */ /* 题目:CIRU2 题目来源:SPOJ 8119 https://www.spoj.pl/problems/CIRUT/ 题目难度:中等偏难 题目内容或思路: 圆的面积并 题意:给n个圆(最多1000个),分别求出覆盖1层的面积、覆盖2层的面积、 覆盖3层的面积。。。覆盖n层的面积 方法见AC大牛blog: http://hi.baidu.com/aekdycoin/blog/item/c1b28e3711246b3f0b55a95e.html 做题日期:2011.3.27 */ #include <cstdio> #include <cstdlib> #include <climits> #include <iostream> #include <algorithm> #include <cstring> #include <string> #include <queue> #include <map> #include <vector> #include <bitset> #include <cmath> #include <set> #include <utility> #include <ctime> #define sqr(x) ((x)*(x)) using namespace std; const int N = 1010; const double eps = 1e-8; const double pi = acos(-1.0); double area[N]; int n; int dcmp(double x) { if (x < -eps) return -1; else return x > eps; } struct cp { double x, y, r, angle; int d; cp(){} cp(double xx, double yy, double ang = 0, int t = 0) { x = xx; y = yy; angle = ang; d = t; } void get() { scanf("%lf%lf%lf", &x, &y, &r); d = 1; } }cir[N], tp[N * 2]; double dis(cp a, cp b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y)); } double cross(cp p0, cp p1, cp p2) { return (p1.x - p0.x) * (p2.y - p0.y) - (p1.y - p0.y) * (p2.x - p0.x); } int CirCrossCir(cp p1, double r1, cp p2, double r2, cp &cp1, cp &cp2) {//两圆求交点数 ,并用cp1和cp2存储其交点 double mx = p2.x - p1.x, sx = p2.x + p1.x, mx2 = mx * mx; double my = p2.y - p1.y, sy = p2.y + p1.y, my2 = my * my; double sq = mx2 + my2, d = -(sq - sqr(r1 - r2)) * (sq - sqr(r1 + r2));//sq为两圆距离的平方和 if (d + eps < 0) return 0; if (d < eps) d = 0; else d = sqrt(d); double x = mx * ((r1 + r2) * (r1 - r2) + mx * sx) + sx * my2; double y = my * ((r1 + r2) * (r1 - r2) + my * sy) + sy * mx2; double dx = mx * d, dy = my * d; sq *= 2; cp1.x = (x - dy) / sq; cp1.y = (y + dx) / sq; cp2.x = (x + dy) / sq; cp2.y = (y - dx) / sq; if (d > eps) return 2; else return 1; } bool circmp(const cp& u, const cp& v) { return dcmp(u.r - v.r) < 0; } bool cmp(const cp& u, const cp& v) { if (dcmp(u.angle - v.angle)) return u.angle < v.angle; return u.d > v.d; } double calc(cp cir, cp cp1, cp cp2) { double ans = (cp2.angle - cp1.angle) * sqr(cir.r) - cross(cir, cp1, cp2) + cross(cp(0, 0), cp1, cp2); return ans / 2; } void CirUnion(cp cir[], int n) { cp cp1, cp2; sort(cir, cir + n, circmp); for (int i = 0; i < n; ++i) for (int j = i + 1; j < n; ++j) if (dcmp(dis(cir[i], cir[j]) + cir[i].r - cir[j].r) <= 0) cir[i].d++;//某圆被覆盖的次数 for (int i = 0; i < n; ++i) { int tn = 0, cnt = 0; for (int j = 0; j < n; ++j) { if (i == j) continue; if (CirCrossCir(cir[i], cir[i].r, cir[j], cir[j].r, cp2, cp1) < 2) continue; cp1.angle = atan2(cp1.y - cir[i].y, cp1.x - cir[i].x);//求圆心指向交点的向量的极角,注意这里atan2(y,x)函数要先y后x cp2.angle = atan2(cp2.y - cir[i].y, cp2.x - cir[i].x); // cp1.d = 1; tp[tn++] = cp1; cp2.d = -1; tp[tn++] = cp2; if (dcmp(cp1.angle - cp2.angle) > 0) cnt++; } tp[tn++] = cp(cir[i].x - cir[i].r, cir[i].y, pi, -cnt);//第i个圆的左端点 tp[tn++] = cp(cir[i].x - cir[i].r, cir[i].y, -pi, cnt); sort(tp, tp + tn, cmp);//把交点按极角排序 int p, s = cir[i].d + tp[0].d; for (int j = 1; j < tn; ++j) { p = s; s += tp[j].d; printf("%f %f %f %f\n",tp[j-1].x,tp[j].y,tp[j-1].x,tp[j].y); area[p] += calc(cir[i], tp[j - 1], tp[j]);//所有被覆盖了p次的圆弧的弦连起来形成的面积,等于覆盖了p次及p次以上的面积,可画图观察 } } } void solve() { for (int i = 0; i < n; ++i) cir[i].get(); memset(area, 0, sizeof(area)); CirUnion(cir, n); for (int i = 1; i <= n; ++i) { area[i] -= area[i + 1]; printf("[%d] = %.3lf\n", i, area[i]); } } int main() { while (scanf("%d", &n) != EOF) { solve(); } return 0; }
标签:计算几何
原文地址:http://blog.csdn.net/lj94093/article/details/45876717