码迷,mamicode.com
首页 > 其他好文 > 详细

开灯问题 —— POJ 1218 THE DRUNK JAILER

时间:2015-05-21 09:11:11      阅读:113      评论:0      收藏:0      [点我收藏+]

标签:

对应POJ 题目:点击打开链接

THE DRUNK JAILER
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 24831   Accepted: 15569

Description

A certain prison contains a long hall of n cells, each right next to each other. Each cell has a prisoner in it, and each cell is locked. 
One night, the jailer gets bored and decides to play a game. For round 1 of the game, he takes a drink of whiskey,and then runs down the hall unlocking each cell. For round 2, he takes a drink of whiskey, and then runs down the 
hall locking every other cell (cells 2, 4, 6, ?). For round 3, he takes a drink of whiskey, and then runs down the hall. He visits every third cell (cells 3, 6, 9, ?). If the cell is locked, he unlocks it; if it is unlocked, he locks it. He 
repeats this for n rounds, takes a final drink, and passes out. 
Some number of prisoners, possibly zero, realizes that their cells are unlocked and the jailer is incapacitated. They immediately escape. 
Given the number of cells, determine how many prisoners escape jail.

Input

The first line of input contains a single positive integer. This is the number of lines that follow. Each of the following lines contains a single integer between 5 and 100, inclusive, which is the number of cells n. 

Output

For each line, you must print out the number of prisoners that escape when the prison has n cells. 

Sample Input

2
5
100

Sample Output

2
10

题意:

可以理解成这样:有n盏灯,一开始所有灯都是灭的,第1轮对序号是1的倍数的灯操作(原来亮的就熄灭,原来灭的就点亮);第2轮对序号是2的倍数的灯操作、、、第i轮对序号是i的倍数的灯操作,直到第n轮过后,问剩下多少盏灯是亮的。


思路1:枚举,不解释


思路2:

这个问题有如下性质:

1、如果某盏灯被操作的次数是奇数,那它就是亮的(一开始是灭的)。

2、对于第i盏灯(i从1开始),如果i是完全平方数,那这盏灯被操作的次数就是奇数。


性质1是显然的:第0次是灭的,第1次是亮的,第2次是灭的。。。

性质2的证明:

对于序号为18这盏灯,它被操作的轮数是:第1轮,第2轮,第3轮,第6轮,第9轮,第18轮。被操作了6次,是偶数次。它被操作的轮数其实就是它的所有约数。一个大于1的非完全平方数的约数个数都是成对出现的,即都是偶数。而完全平方数,如16,其约数为1,2,4,8,16。是5个,因为4的平方是16,所以4只算一次。所以完全平方数的约数是奇数。


对于题目要求,序号为i的灯的被操作次数就是i的所有约数的个数a,如果a是奇数,那序号为i的灯最后就是亮的。归结起来就是如果i是完全平方数,那序号为i的灯最后就是亮的。所以题目最后求的就是1~n的完全平方数的个数。答案不难得出,就是将n开方向下取整(可以这样理解:x^2 <= n,解出x = 根号n向下取整,那x就是满足要求的最大值,如果k属于1~x,那k^2都是完全平方数,共有x个)。


思路1代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define M 550
int a[M];

int main()
{
	//freopen("in.txt","r",stdin);
	int n, x, i, j, ans;
	scanf("%d", &n);
	while(n--)
	{
		ans = 0;
		memset(a, 0, sizeof(a));
		scanf("%d", &x);
		for(i = 1; i <= x; i++){
			for(j = i; j <= x; j += i){
				if(a[j]) a[j] = 0;
				else a[j] = 1;
			}
		}
		for(i = 1; i <= x; i++)
			if(a[i]) ans++;
		printf("%d\n", ans);
	}
	return 0;
}

思路2代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

int main()
{
	//freopen("in.txt","r",stdin);
	int n, x;
	scanf("%d", &n);
	while(n--)
	{
		scanf("%d", &x);
		printf("%d\n", (int)sqrt(double(x)));
	}
	return 0;
}

两种写法的空间都是140k左右,时间都是0ms,不太理解~






开灯问题 —— POJ 1218 THE DRUNK JAILER

标签:

原文地址:http://blog.csdn.net/u013351484/article/details/45876517

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!