标签:
问题描述:
(1)先建立一个Point(点)类,包含数据成员x,y(坐标点);
(2)以Point为基类,派生出一个Circle(圆)类,增加数据成员(半径),基类的成员表示圆心;
(3)编写上述两类中的构造、析构函数及必要运算符重载函数(本项目主要是输入输出);
(4)定义友元函数int locate,判断点p与圆的位置关系(返回值<0圆内,==0圆上,>0 圆外);
int main( ) { Circle c1(3,2,4),c2(4,5,5); //c2应该大于c1 Point p1(1,1),p2(3,-2),p3(7,3); //分别位于c1内、上、外 cout<<"圆c1: "<<c1; cout<<"点p1: "<<p1; cout<<"点p1在圆c1之"<<((locate(p1, c1)>0)?"外":((locate(p1, c1)<0)?"内":"上"))<<endl; cout<<"点p2: "<<p2; cout<<"点p2在圆c1之"<<((locate(p2, c1)>0)?"外":((locate(p2, c1)<0)?"内":"上"))<<endl; cout<<"点p3: "<<p3; cout<<"点p3在圆c1之"<<((locate(p3, c1)>0)?"外":((locate(p3, c1)<0)?"内":"上"))<<endl; return 0; }
(6)与圆心相连的直线:给定一点p,其与圆心相连成的直线,会和圆有两个交点,如图。在上面定义的Point(点)类和Circle(圆)类基础上,设计一种方案,输出这两点的坐标。
提示:
代码:
#include <iostream> #include <cmath> using namespace std; class Circle; class Point{ protected: double x,y; public: Point(){x=0,y=0;} Point(double a,double b):x(a),y(b){} double getx(){return x;} double gety(){return y;} double distance(const Point& c){ double dx = x-c.x; double dy = y-c.y; return sqrt(dx*dx+dy*dy); } friend istream&operator>>(istream& in,Point & c); friend ostream&operator<<(ostream& out,const Point& c); friend void fun(Circle &c, Point &p1); }; istream& operator>>(istream& in,Point & c){ cout<<"请输入点坐标(x,y)格式\n"; char a,b,e; do{ cin>>a>>c.x>>b>>c.y>>e; if(a=='('&&b==','&&e==')') break; cout<<"格式错误请重新输入!\n"; } while(1); return in; } ostream& operator<<(ostream& out,const Point & c){ cout<<"("<<c.x<<","<<c.y<<")\n"; return out; } class Circle:public Point{ private: double r; public: Circle():r(0){Point();} Circle(double a,double b,double c):Point(a,b),r(c){} friend istream&operator>>(istream& in,Circle & c); friend ostream&operator<<(ostream& out,const Circle& c); friend int locate(Point&,Circle& ); bool operator>(const Circle&); bool operator<(const Circle&); bool operator>=(const Circle&); bool operator<=(const Circle&); bool operator==(const Circle&); bool operator!=(const Circle&); friend void fun(Circle &c, Point &p1); double area(){ return 3.14159*r*r; } }; void fun(Circle &c, Point &p){ Point p1,p2; p1.x = (c.x + sqrt(c.r*c.r/(1+((c.y-p.gety())/(c.x-p.getx()))*((c.y-p.gety())/(c.x-p.getx()))))); p2.x = (c.x - sqrt(c.r*c.r/(1+((c.y-p.gety())/(c.x-p.getx()))*((c.y-p.gety())/(c.x-p.getx()))))); p1.y = (p.gety() + (p1.x -p.getx())*(c.y-p.gety())/(c.x-p.getx())); p2.y = (p.gety() + (p2.x -p.gety())*(c.y-p.gety())/(c.x-p.getx())); cout<<"点p"<<p<<"与圆"<<c<<"相交于"<<p1<<"和"<<p2<<"两点\n"; } bool Circle::operator>(const Circle& c){ if(r>c.r) return true; return false; } bool Circle::operator<(const Circle& c){ if(r<c.r) return true; return false; } bool Circle::operator>=(const Circle& c){ if(r<c.r) return false; return true; } bool Circle::operator<=(const Circle& c){ if(r>c.r) return false; return true; } bool Circle::operator==(const Circle& c){ if(r==c.r) return true; return false; } bool Circle::operator!=(const Circle& c){ if(r==c.r) return false; return true; } istream&operator>>(istream& in,Circle& c){ Point d; cin>>d; c.x=d.getx(); c.y=d.gety(); cout<<"请输入半径:"; cin>>c.r; return in; } ostream&operator<<(ostream& out,const Circle& c){ cout<<"("<<c.x<<","<<c.y<<") 半径="<<c.r<<'\12'; return out; } int locate(Point&t2,Circle&t1){ Point t=t1; double x=t1.distance(t2); if (abs(x-t1.r)<1e-7) return 0; else if (x<t1.r) return -1; else return 1; } int main( ){ Circle c1(3,2,4); Point p; cin>>p; fun(c1,p); return 0; }
运行结果:
标签:
原文地址:http://blog.csdn.net/zp___waj/article/details/45890883