本篇继续讲解opencv上使用BackgroundSubtractorGMG,进行运动物体跟踪,并将跟踪到运动物体用圆框选起来。本篇是基于opecncv官方实例: bgfg_gmg.cpp,进行讲解和修改。
#include <opencv2/opencv.hpp> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/video/background_segm.hpp" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/highgui/highgui.hpp" #include "opencv2/legacy/legacy.hpp" #include <stdio.h> #include <stdlib.h> #include <ctype.h> using namespace cv; int main(int argc, char** argv){ Mat frame, fgmask, segm; Ptr<BackgroundSubtractorGMG> fgbg = Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG"); if (fgbg.empty()){ std::cerr << "Failed to create BackgroundSubtractor.GMG Algorithm." << std::endl; return -1; } fgbg->set("initializationFrames", 20); fgbg->set("decisionThreshold", 0.7); VideoCapture cap; cap.open(argv[1]); if (!cap.isOpened()){ std::cerr << "Cannot read video. Try moving video file to sample directory." << std::endl; return -1; } namedWindow("FG Segmentation", WINDOW_NORMAL); for (;;){ if (!cap.read(frame)){ break; } (*fgbg)(frame, fgmask); frame.copyTo(segm); IplImage ImaskCodeBook = fgmask; cvSegmentFGMask(&ImaskCodeBook); add(frame, Scalar(100, 100, 0), segm, fgmask); imshow("FG Segmentation", segm); imshow("mask", fgmask); int c = waitKey(30); if (c == ‘q‘ || c == ‘Q‘ || (c & 255) == 27) break; } return 0; }
1、首先定义一个BackgroundSubtractorGMG结构,并设置它最开始初始化帧数为20,算法阀值参数为0.7
Ptr<BackgroundSubtractorGMG> fgbg = Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG"); if (fgbg.empty()){ std::cerr << "Failed to create BackgroundSubtractor.GMG Algorithm." << std::endl; return -1; } fgbg->set("initializationFrames", 20); fgbg->set("decisionThreshold", 0.7);
2、打开视频文件到cap中。
VideoCapture cap; cap.open(argv[1]); if (!cap.isOpened()){ std::cerr << "Cannot read video. Try moving video file to sample directory." << std::endl; return -1; }
3、取出图像中数据,使用(*fgbg)一帧一帧的进行跟踪处理,将处理后跟踪到的运动物体位置,保存到fgmask中。接着使用cvSegmentFGMask 做连通域分割,最后把fgmask作为掩码,将当前帧中运动物体颜色修改为:Scalar(100, 100, 0),并保存到segm中,最后将图像segm和掩码fgmask 都实时显示出来。
if (!cap.read(frame)){ break; } (*fgbg)(frame, fgmask); frame.copyTo(segm); IplImage ImaskCodeBook = fgmask; cvSegmentFGMask(&ImaskCodeBook); add(frame, Scalar(100, 100, 0), segm, fgmask); imshow("FG Segmentation", segm); imshow("mask", fgmask);
对应的效果演示如下:
继续我们要做的下一步,是在之前基础上进行修改,在原video文件播放时候,用圆框选出运动目标。
#include <opencv2/opencv.hpp> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/video/background_segm.hpp" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/highgui/highgui.hpp" #include "opencv2/legacy/legacy.hpp" #include <stdio.h> #include <stdlib.h> #include <ctype.h> using namespace cv; int main(int argc, char** argv){ Mat frame, fgmask, segm, find_circle; vector<vector<Point> > contours; vector<Vec4i> hierarchy; Ptr<BackgroundSubtractorGMG> fgbg = Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG"); if (fgbg.empty()){ std::cerr << "Failed to create BackgroundSubtractor.GMG Algorithm." << std::endl; return -1; } fgbg->set("initializationFrames", 20); fgbg->set("decisionThreshold", 0.7); VideoCapture cap; cap.open(argv[1]); if (!cap.isOpened()){ std::cerr << "Cannot read video. Try moving video file to sample directory." << std::endl; return -1; } namedWindow("FG Segmentation", WINDOW_NORMAL); for (;;){ if (!cap.read(frame)){ break; } (*fgbg)(frame, fgmask); frame.copyTo(segm); IplImage ImaskCodeBook = fgmask; cvSegmentFGMask(&ImaskCodeBook); fgmask.copyTo(find_circle); findContours(find_circle, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); vector<vector<Point> > contours_poly( contours.size()); vector<Point2f>center( contours.size()); vector<float>radius( contours.size()); for( int i = 0; i < contours.size(); i++){ approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true); minEnclosingCircle( contours_poly[i], center[i], radius[i]); } for(int i = 0; i< contours.size(); i++ ){ circle(segm, center[i], (int)radius[i], Scalar(100, 100, 0), 2, 8, 0); } imshow("FG Segmentation", segm); imshow("mask", fgmask); int c = waitKey(30); if (c == ‘q‘ || c == ‘Q‘ || (c & 255) == 27) break; } return 0; }
这里主要多加了的操作步骤,就是对(*fgbg)(frame, fgmask);处理生成的掩码图像fgmask进行轮廓探测,然后根据探测结果,生成出可以框选住该轮廓 的圆的坐标与直径,之后在原图像中根据这个坐标和直径,框选好该运动目标。
findContours(find_circle, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); vector<vector<Point> > contours_poly( contours.size()); vector<Point2f>center( contours.size()); vector<float>radius( contours.size()); for( int i = 0; i < contours.size(); i++){ approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true); minEnclosingCircle( contours_poly[i], center[i], radius[i]); } for(int i = 0; i< contours.size(); i++ ){ circle(segm, center[i], (int)radius[i], Scalar(100, 100, 0), 2, 8, 0); }
效果演示如下:
原文地址:http://blog.csdn.net/u011630458/article/details/45895649