标签:
Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.
For example, given array S = {-1 2 1 -4}, and target = 1. The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
Array Two Pointers
int threeSumClosest(vector<int>& nums, int target) { int len_nums=nums.size(); int x=0; int y=1; int best_two_sum=abs(nums[0]+nums[1]-target); for(int i=0;i<len_nums-1;i++) for(int j=i+1;j<len_nums;j++) { if(abs(nums[i]+nums[j]-target)<best_two_sum) { x=i; y=j; best_two_sum=abs(nums[i]+nums[j]-target); } } int z=0; int flag=0; int last_result; for(int i=0;i<len_nums;i++) { if(i!=x&&i!=y&&flag==0) {z=i;last_result=abs(nums[i]+nums[x]+nums[y]-target);flag=1;} if(i!=x&&i!=y&&flag==1) { if(abs(nums[i]+nums[x]+nums[y]-target)<last_result) { z=i; last_result=abs(nums[i]+nums[x]+nums[y]-target); } } } return nums[x]+nums[y]+nums[z]; } */ //O(n^3)时间复杂度太高了 /* int threeSumClosest(vector<int>& nums, int target) { int len_nums=nums.size(); int result=abs(nums[0]+nums[1]+nums[2]-target); int l_x=0,l_y=1,l_z=2; for(int y=1;y<len_nums-1;y++) { for(int x=0;x<y;x++) for(int z=y+1;z<len_nums;z++) { if(abs(nums[x]+nums[y]+nums[z]-target)<result) { l_x=x;l_y=y;l_z=z; result=abs(nums[x]+nums[y]+nums[z]-target); } } } return nums[l_x]+nums[l_y]+nums[l_z]; }
接下来想到干脆直接采用穷举法,试下,也就是时间复杂度为O(n^3)发现不能AC
int threeSumClosest(vector<int>& nums, int target) { int len_nums=nums.size(); int result=abs(nums[0]+nums[1]+nums[2]-target); int l_x=0,l_y=1,l_z=2; for(int y=1;y<len_nums-1;y++) { for(int x=0;x<y;x++) for(int z=y+1;z<len_nums;z++) { if(abs(nums[x]+nums[y]+nums[z]-target)<result) { l_x=x;l_y=y;l_z=z; result=abs(nums[x]+nums[y]+nums[z]-target); } } } return nums[l_x]+nums[l_y]+nums[l_z]; }
再后来在网上看了下别人的算法,发现有一种还可以,就是在开始的时候就进行排序,这个是O(nlog n),接着枚举一个数,再设立两个指针,一个左指针从0到这个数的位置,一个右指针从最后到这个数的位置,然后当sum<target时将左指针右移,当sum>target时,将右指针向左移,
值得注意的是,在这个移的过程中,当sum<target时,若右移后发现又变成了sum>target,则要将之前的值记录下来,进行比较,另外一个指针也是
同样的道理。这个时间复杂度是O(n^2),
总的为O(nlog n)+O(n^2)=O(n^2)
int threeSumClosest(vector<int>& nums, int target) { sort(nums.begin(),nums.end()); int len_nums=nums.size(); int sum; int sum_reault; int last_sum=abs(nums[0]+nums[1]+nums[2]-target); sum_reault=nums[0]+nums[1]+nums[2]; for(int y=1;y<len_nums-1;y++) { int x=0; int z=len_nums-1; while(x<y&&z>y) { if(nums[x]+nums[y]+nums[z]>target) { z--; if(z>y&&nums[x]+nums[y]+nums[z]<target) { sum=nums[x]+nums[y]+nums[z+1]; if(abs(sum-target)<last_sum) { last_sum=abs(sum-target); sum_reault=sum; } } } else if(nums[x]+nums[y]+nums[z]<target) { x++; if(x<y&&nums[x]+nums[y]+nums[z]>target) { sum=nums[x-1]+nums[y]+nums[z]; if(abs(sum-target)<last_sum) { last_sum=abs(sum-target); sum_reault=sum; } } } else return target; } if(x==y) { x-=1; sum=nums[x]+nums[y]+nums[z]; if(abs(sum-target)<last_sum) { last_sum=abs(sum-target); sum_reault=sum; } } if(z==y) { z+=1; sum=nums[x]+nums[y]+nums[z]; if(abs(sum-target)<last_sum) { last_sum=abs(sum-target); sum_reault=sum; } } } return sum_reault; } int main() { vector<int> vec; vec.push_back(0); vec.push_back(2); vec.push_back(1); vec.push_back(-3); cout<<threeSumClosest(vec,1)<<endl; }
leetcode_16题——3Sum Closest(两个指针)
标签:
原文地址:http://www.cnblogs.com/yanliang12138/p/4525998.html