题目大意:给定两条折线,Alice沿着第一条折线走,Bob沿着第二条折线走,邮递员从Alice路径上的任意一点出发,沿直线走到Bob的路径上后刚好和Bob相遇,三人的速度都是
二分答案,然后让Bob提前出发
无解比较难办,反正我是提前判断了无解的情况
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define M 50500
#define EPS 1e-7
using namespace std;
struct Point{
double x,y;
Point() {}
Point(double _,double __):
x(_),y(__) {}
friend istream& operator >> (istream &_,Point &p)
{
return scanf("%lf%lf",&p.x,&p.y),_;
}
friend Point operator + (const Point &p1,const Point &p2)
{
return Point(p1.x+p2.x,p1.y+p2.y);
}
friend Point operator - (const Point &p1,const Point &p2)
{
return Point(p1.x-p2.x,p1.y-p2.y);
}
friend Point operator * (const Point &p,double rate)
{
return Point(p.x*rate,p.y*rate);
}
friend double Distance(const Point &p1,const Point &p2)
{
return sqrt( (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) );
}
}l1[M],l2[M];
int n1,n2;
double s1[M],s2[M];
//bool have_solution;
double Min_Distance(const Point &p1,Point v1,const Point &p2,Point v2)
{
double a=(v1.x-v2.x)*(v1.x-v2.x)+(v1.y-v2.y)*(v1.y-v2.y);
double b=(p1.x-p2.x)*(v1.x-v2.x)+(p1.y-p2.y)*(v1.y-v2.y);
double t=a<EPS?0:-b/a;
if(t>1) t=1;
if(t<0) t=0;
return Distance(p1+v1*t,p2+v2*t);
}
bool Judge(double mid)
{
double _s1=0,_s2=mid,re=1e7;
int p1=1,p2=lower_bound(s2+1,s2+n2+1,mid-EPS)-s2;
if( p1>n1 || p2>n2 ) return false ;
Point last1=p1==1?l1[1]:l1[p1-1]+(l1[p1]-l1[p1-1])*(1.0/(s1[p1]-s1[p1-1]))*(_s1-s1[p1-1]);
Point last2=p2==1?l2[1]:l2[p2-1]+(l2[p2]-l2[p2-1])*(1.0/(s2[p2]-s2[p2-1]))*(_s2-s2[p2-1]);
do
{
if( fabs(s1[p1]-_s1)<EPS ) p1++;
if( fabs(s2[p2]-_s2)<EPS ) p2++;
if( p1>n1 || p2>n2 ) break ;
double temp=min(s1[p1]-_s1,s2[p2]-_s2);
_s1+=temp;_s2+=temp;
Point point1=l1[p1-1]+(l1[p1]-l1[p1-1])*(1.0/(s1[p1]-s1[p1-1]))*(_s1-s1[p1-1]);
Point point2=l2[p2-1]+(l2[p2]-l2[p2-1])*(1.0/(s2[p2]-s2[p2-1]))*(_s2-s2[p2-1]);
re=min(re,Min_Distance(point1,last1-point1,point2,last2-point2));
last1=point1;last2=point2;
}while( p1<=n1 && p2<=n2 /*&& _s1<s1[n1]+EPS && _s2<s2[n2]+EPS*/ );
return re < mid + EPS ;
}
double Bisection()
{
double l=0,r=s2[n2];
while(r-l>EPS)
{
double mid=(l+r)/2;
if( Judge(mid) )
r=mid/*,have_solution=true*/;
else
l=mid;
}
return (l+r)/2;
}
int main()
{
int i;
cin>>n1;
for(i=1;i<=n1;i++)
{
cin>>l1[i];
if(i>1)
s1[i]=s1[i-1]+Distance(l1[i-1],l1[i]);
}
cin>>n2;
for(i=1;i<=n2;i++)
{
cin>>l2[i];
if(i>1)
s2[i]=s2[i-1]+Distance(l2[i-1],l2[i]);
}
if( Distance(l1[1],l2[n2])>s2[n2] + EPS )
return puts("impossible"),0;
double ans=Bisection();
//if(!have_solution)
// puts("impossible");
//else
cout<<fixed<<setprecision(5)<<ans<<endl;
}
BZOJ 4077 Wf2014 Messenger 二分答案+计算几何
原文地址:http://blog.csdn.net/popoqqq/article/details/45968161