标签:
Mean:
略
analyse:
简单的线段树维护矩阵。
矩阵乘法的结合律(a * b * c == a * (b * c)),注意矩阵乘法不满足分配率(a *b != b * a)。
令 M[x] = [1 A[x]]
[1 0 ] ,
那么有 [ F[R] ] = M[R] * M[R-1] * ... * M[L+2] * [F[L+1]]
[F[R-1]] [ F[L] ]
线段树节点维护上边等式右边前n - 1项的乘值(假设等式右边有n项)。每次询问O(log(n))。
Time complexity: O(n*logn)
Source code:
/* * this code is made by crazyacking * Verdict: Accepted * Submission Date: 2015-05-25-20.57 * Time: 0MS * Memory: 137KB */ #include <queue> #include <cstdio> #include <set> #include <string> #include <stack> #include <cmath> #include <climits> #include <map> #include <cstdlib> #include <iostream> #include <vector> #include <algorithm> #include <cstring> #define LL long long #define ULL unsigned long long using namespace std; const int MAXN = 100100; const int MOD = 1000000007; struct Mat { long long m[2][2]; Mat() { memset(m, 0, sizeof(m)); } Mat operator * (const Mat &b) { Mat temp; for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) for(int k = 0; k < 2; k++) temp.m[i][j] = ((m[i][k] * b.m[k][j]) + temp.m[i][j]) % MOD; return temp; } }; struct Node { int l, r; Mat mat; }; Node node[MAXN << 2]; int a[MAXN]; void Build(int rt, int l, int r) { int m; node[rt].l = l; node[rt].r = r; if(l == r) { node[rt].mat.m[0][0] = 1; node[rt].mat.m[0][1] = a[l]; node[rt].mat.m[1][0] = 1; node[rt].mat.m[1][1] = 0; } else { m = (l + r) >> 1; Build(rt << 1, l, m); Build(rt << 1 | 1, m + 1, r); node[rt].mat = node[rt << 1 | 1].mat * node[rt << 1].mat;//注意顺序 } } Mat Query(int rt, int ql, int qr) { int m; if(ql == node[rt].l && node[rt].r == qr) return node[rt].mat; else { m = (node[rt].l + node[rt].r) >> 1; if(qr <= m) return Query(rt << 1, ql, qr); else if(ql > m) return Query(rt << 1 | 1, ql, qr); else return Query(rt << 1 | 1, m + 1, qr) * Query(rt << 1, ql, m);//注意顺序 } } int T, n, m, ql, qr; int main() { scanf("%d", &T); while(T--) { Mat res, f; scanf("%d%d",&n, &m); for(int i = 1; i <= n; i++) scanf("%d", &a[i]); Build(1, 1, n); for(int i = 1; i<= m; i++) { scanf("%d%d", &ql, &qr); if(qr - ql >= 2) { f.m[0][0] = a[ql + 1]; f.m[1][0] = a[ql]; res = Query(1, ql + 2, qr) * f; printf("%d\n", res.m[0][0]); } else printf("%d\n", a[qr]); } } return 0; }
线段树 + 矩阵 --- ZOJ 3772 Calculate the Function
标签:
原文地址:http://www.cnblogs.com/crazyacking/p/4529012.html