码迷,mamicode.com
首页 > 其他好文 > 详细

[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.12

时间:2015-05-26 12:29:06      阅读:126      评论:0      收藏:0      [点我收藏+]

标签:

证明: 若 $f(x)$ 为 $[0,1]$ 上的连续函数, 且对一切 $x\in [0,1]$ 有 $\dps{\int_0^x f(u)\rd u\geq f(x)\geq 0}$, 则 $f(x)\equiv 0$. (上海师范大学)

 

证明: 设 $\dps{F(x)=\int_0^x f(t)\rd t\geq 0}$, 则 $$\beex \bea 0\leq F‘(x)\leq F(x)&\ra \sez{e^{-x}F(x)}‘\leq 0\\ &\ra e^{-x}F(x)\leq e^{-0}F(0)=0\ (0\leq x\leq 1)\\ &\ra F(x)\leq 0\ (0\leq x\leq 1)\\ &\ra F(x)=0\ (0\leq x\leq 1)\\ &\ra f(x)=F‘(x)=0\ (0\leq x\leq 1). \eea \eeex$$

[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.12

标签:

原文地址:http://www.cnblogs.com/zhangzujin/p/4529945.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!