码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 1069--DP--(摞箱子问题)

时间:2015-05-27 10:20:22      阅读:171      评论:0      收藏:0      [点我收藏+]

标签:hdu   dp   

题意:有n中箱子,可以任意选择它的面作为底面,只有当底面的长和宽严格小于下面的箱子时才能放在下面的箱子上。求用这n种箱子能摞的最高的高度(每种箱子的个数不限)。

分析:dp 转移方程:dp[i]=max(dp[j]+a[i],dp[i]),j 从 0 到 i-1,在计算状态转移方程之前先判断箱子的长宽是否满足条件。预先要按照能摞的条件把箱子排序,然后dp;注意每种箱子有三种放置方式,相当于有三种箱子。

1A!很多时候真的只要坚持一下下其实就成功了。

代码:

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int n;
struct h{
	int x,y,z;	
}a[100];
int dp[100];
bool cmp(h w,h v)
{
	if(w.x!=v.x) return w.x>v.x;
	else return w.y>v.y;
}
int DP()
{
	for(int i=0;i<3*n;i++) dp[i]=a[i].z;
	int mx=-1;
	for(int i=0;i<3*n;i++){
		for(int j=0;j<i;j++){
			if(a[j].x>a[i].x&&a[j].y>a[i].y){
				if(dp[j]+a[i].z>dp[i]) dp[i]=dp[j]+a[i].z;
			}
		}
		if(mx<dp[i]) mx=dp[i];
	}
	return mx;
}
int main()
{
	int m=1;
	while(cin>>n){
		if(!n) break;
		for(int i=0;i<3*n;i+=3){
			cin>>a[i].x>>a[i].y>>a[i].z;
			if(a[i].x<a[i].y)
			   swap(a[i].x,a[i].y);  //交换是为了判断条件的时候保证长和长相比,宽和宽相比 
			if(a[i].x>a[i].z)  //第i种箱子的第二种放置方法 
			   a[i+1].x=a[i].x,a[i+1].y=a[i].z,a[i+1].z=a[i].y; 
			else
			   a[i+1].x=a[i].z,a[i+1].y=a[i].x,a[i+1].z=a[i].y;
			if(a[i].y>a[i].z)  //第i种箱子的第三种放置方法
			   a[i+2].x=a[i].y,a[i+2].y=a[i].z,a[i+2].z=a[i].x;
			else
			   a[i+2].x=a[i].z,a[i+2].y=a[i].y,a[i+2].z=a[i].x;
		}
		sort(a,a+3*n,cmp);
		cout<<"Case "<<m<<": maximum height = ";m++;
		cout<<DP()<<endl;
	}
}


HDU 1069--DP--(摞箱子问题)

标签:hdu   dp   

原文地址:http://blog.csdn.net/ac_0_summer/article/details/46038645

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!